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1 Definition of Quantities.

u := velocity field
ρ := mass density
p := pressure
g := gravity
τ := total stress
σ := viscous stress
e := heat energy per mass
T := temperature
q := heat flux
κ := heat conductivity
R := gas constant
cv := specific heat at constant volume
cp := specific heat at constant pressure
γ := cp/cv

2 Overview

The Boussinesq equations for stratified flow (e.g. of the
atmosphere or ocean) assume that fluid flow is incompress-
ible yet convects a diffusive quantity that endows the fluid
with positive or negative buoyancy. This buoyancy quan-
tity is identified with a linear function of the deviation of
temperature or density from adiabatic hydrostatic balance.

3 Balance laws.

To derive these equations we begin by writing balance equa-
tions for mass, momentum, and thermal energy.

3.1 Conservation of mass.

dtρ + ρ∇ · u = 0, i.e., dt ln ρ = −∇ · u. The Boussinesq

approximation assumes that ∇ · u ≃ 0 .

3.2 Conservation of momentum.

ρdtu = ρg −∇p+∇ · σ

where the viscous stress tensor is given by σ = λ∇ · uδ +

µ(∇u+∇utr). (With generality λ = −2
3 µ.) Assuming that

∇λ ≃ 0, ∇µ ≃ 0, and ∇ · u ≃ 0, this simplifies to:

ρdtu ≃ ρg −∇p+ µ∇2u

3.3 Thermal energy.

The general balance of thermal energy is:

ρdte = τ : ∇u−∇ · q,

where τ = σ+pδ. To obtain this equation, write the balance
of energy,

ρdt(e+ u2/2) = ∇ · (τ · u)−∇ · q

and subtract the balance of kinetic energy (i.e. u dot mo-
mentum balance):

ρdt(u
2/2) = (∇ · τ) · u.

In the thermal energy balance, we neglect the term repre-
senting the contribution of the viscous stress σ to thermal
energy production. Then

ρdte+ p∇ · u = −∇ · q.

We now simplify each term. We simplify the terms in the
left hand side using the ideal gas relations e = cvT and
p = ρRT respectively:

ρdte = ρcvdtT,

and using ln p = ln ρ+ lnT ,

p∇ · u = −pdt ln ρ

= pdt(lnT − ln p)

= pdt lnT − dtp

= ρRdtT − dtp.

So the left hand side is ρ (cv +R)
︸ ︷︷ ︸

Call cp

dtT − dtp.

To simplify the right hand side, assume q = −κ̃∇T . As-
sume that ∇κ̃ ≃ 0. We get:

ρcpdtT ≃ dtp+ κ̃∇2T, i.e.,

dtT ≃
1

ρcp
dtp+ κ∇2T, where κ :=

κ̃

cpρ
.

We will use that ∇κ ≃ 0.

4 Hydrostatic balance.

A stratified fluid is said to be in hydrostatic equilibrium if
it is at rest (u = 0) and the fluid state variables are simply
functions of height z. Let ρ0(z), p0(z), T0(z),u = 0 be the
state variables of an atmosphere in hydrostatic equilibrium.
Conservation of momentum just reduces to the requirement
that such an atmosphere in hydrostatic balance must satisfy
static force balance of pressure and gravitational forces:

dzp0 = −ρ0g.

5 Adiabatic hydrostatic equilib-

rium.

A hydrostatic equilibrium is said to be stable if for any
test volume selected from any level of the column of fluid,
if we transport it to another fluid level and adiabatically
change its pressure to match the pressure at the new level,
the test volume will experience a buoyancy force in a direc-
tion that pushes it toward its original level. (Recall that
a test volume experiences a buoyancy force when its den-
sity differs from the density of the surrounding fuid.) If
such an adiabatically transported test volume never expe-
riences a buoyancy force, the fluid column is said to be in
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neutral equilibrium. Such a neutrally stable atmosphere is
called an isentropic or adiabatic atmosphere. The entropy
of such an atmosphere is constant with height. This holds
because (1) entropy is an invariant of an adiabatic process,
(2) entropy is a function of pressure and density, and (3) in
a neutrally stable atmosphere the pressure and density of
an adiabatically transported test volume always match the
surrounding fluid.

6 Aside: ideal gas hydrostatic equi-

librium.

6.1 Entropy.

To determine expressions for isentropic equilibrium, we
write expressions for the differential of entropy.
ds = dq

T = de+p dv
T = cv

dT
T +R dv

v = cv d lnT +Rd ln v

= d(cv lnT −R ln ρ) = cv d ln
(

Tρ

(
−

R
cv

=1−γ
))

= d(cv ln p− cp ln ρ) = cv d ln
(

pρ

(
−

cp

cv
=−γ

))

= d(cp lnT −R ln p) = cp d ln
(

Tp

(
−

R
cp

= 1−γ

γ

))

6.2 Ideal gas isentropic relations.

For an isentropic atmosphere, dzs(z) = 0, so the entropy
differential formulas yield isentropic relations between state
variables at heights z0 and z:

T

T0
=

( ρ

ρ0

)γ−1

,
( ρ

ρ0

)

=
( p

p0

)1/γ

,

( T

T0

)γ

=
( ρ

ρ0

)γ−1

, and lastly,
T

T0
=

( p

p0

) γ−1

γ

.

This last relation provides us an explicit formula for the
potential temperature. The potential temperature is defined
to be the temperature that a parcel of air would have if
it were brought adiabatically to a reference temperature.
Thus, if we take p0 as the reference temperature (typically
1000 mbars), the potential temperature is

θ := T0 = T
( p

p0

) γ−1

γ

.

6.3 Aside: ideal gas adiabatic lapse rate.

Recall isentropy: d lnT = R
cp
d ln p.

Recall hydrostatic force balance: dzp = −ρg.
Dividing by p and using p = ρRT gives dz ln p = −g

TR .

Multiplying by R
cp

gives dz lnT = −g
Tcp

, i.e., dzT = −g
cp

.

7 Perturbation from hydrostatic

balance.

For each state variable q let q0(z) represent a stratified hy-
drostatic balance. Write the state variables as perturba-
tions from this hydrostatic balance:

q = q0 + q′.

7.1 Perturbation from hydrostatic mo-

mentum balance.

Recall the balance law that we derived for momentum,

ρdtu = ρg −∇p+ µ∇2u,

and subtract the hydrostatic balance relation

0 = ρ0g −∇p0.

We get

(ρ0 + ρ′)dtu = ρ′g −∇p′ + µ∇2u.

Dividing by ρ0 gives

(

1 +
ρ′

ρ0

)

dtu =
ρ′

ρ0
g −

1

ρ0
∇p′ + ν∇2u,

where ν := µ
ρ0

is the kinematic viscosity. Invoking the

Boussinesq assumption ρ′ ≪ ρ0 gives:

dtu ≃
ρ′

ρ0
g −

1

ρ0
∇p′ + ν∇2u.

7.2 Perturbation from hydrostatic thermal

energy balance.

Substitute the perturbation expansions into the balance law
that we derived for thermal energy:

dt(T0 + T ′) =
dt(p0 + p′)

(ρ0 + ρ′)cp
+ κ∇2(T0 + T ′).

and subtract the hydrostatic balance relation,

dtT0 =
dtp0
ρ0cp

+ κ∇2T0.

Invoking the Boussinesq assumption ρ′ ≪ ρ0, we get:

dtT
′ =

dtp
′

ρ0cp
+ κ∇2T ′.

7.3 Perturbation from hydrostatic isen-

tropic thermal energy balance.

We wish to choose a reference hydrostatic equilibrium for
which we can neglect the term dtp̃

ρ0cp
.

I claim that we can neglect this term if we assume that
the hydrostatic equilibrium is isentropic. In this case, if
the state of a convected volume element agrees with the
hydrostatic equilibrium, this agreement will persist, and if
the state differs slightly from hydrostatic equilibrium, then
the difference will likewise tend to persist (assuming no heat
diffusion).

This term essentially represents the contribution to the rate
of change of the temperature perturbation due to the devi-

ation of the hydrostatic equilibrium from isentropy.
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7.4 Perturbation from hydrostatic equilib-

rium as a perturbation from isentropic

hydrostatic equilibrium.

In general the atmosphere is close to a hydrostatic equilib-
rium, but that equilibrium is not typically isentropic.

Expand each state variable q as q = qa(z) + q1(z) + q′(z),
where qa + q1 =: q0 represents the actual hydrostatic equi-
librium of the atmosphere, and where qa represents some
isentropic hydrostatic equilibrium. Let q̃ = q1(z) + q′(z),
the perturbation from isentropic equilibrium.

Recall that d ln p = d ln ρ+d lnT . Assuming that perturba-

tions from isentropy are small, this means that p̃
p0

≃ ρ̃
ρ0

+ T̃
T0

.

That is, T̃ ≃
(

−T0

ρ0

)(

ρ̃− ρ0

p0

p̃
)

. We use this to eliminate T

from the heat diffusion equation, dtT̃ = +κ∇2T̃ :

dt

(

ρ̃−
ρ0
p0

p̃
)

= +κ∇2
(

ρ̃−
ρ0
p0

p̃
)

Using q̃ = q1 + q′ and ∇2q1 ≃ 0,

dt

(

ρ′ −
ρ0
p0

p′
)

+ u · ẑ ∂z

(

ρ1 −
ρ0
p0

p1

)

︸ ︷︷ ︸

Call −b

= +κ∇2
(

ρ′ −
ρ0
p0

p′
)

.

We neglect the derivatives of the pressure deviation, dtp
′

and ∇2p′. (It seems that this is justified by the quasi-
geostrophic and quasihydrostatic balance assumptions.)

This gives an evolution equation for the perturbation in the
density:

dtρ
′ − bu · ẑ = +κ∇2ρ′

8 Boussinesq system.

The full set of Boussinesq equations is thus:

∇ · u = 0,

dtu = −
ρ′

ρ0
gẑ−

1

ρ0
∇p′ + ν∇2u,

dtρ
′ = bu · ẑ+ κ∇2ρ′.

In order to reduce the number of parameters by one, we
define the “buoyancy frequency” N and the rescaled tem-
perature perturbation θ and pressure p by

N2 :=
gb

ρ0

ρ′ =

√

bρ0
g

θ

p =
p′

ρ0

This gives a system with a minimal number of free param-
eters:

∇ · u = 0,

dtu = −Nθẑ−∇p+ ν∇2u,

dtθ = Nu · ẑ+ κ∇2θ

Ertel’s Potential Vorticity Theorem:
a Derivation.
by Alec Johnson, April 26, 2007

9 Definition of Quantities.

u = velocity field
ω = ∇× u = vorticity
ρ = mass density
p = pressure
g = ∇φ = gravity
F = viscous drag
dt = convective derivative
Ω = angular speed of reference frame
ωa = ω + 2Ω = “absolute vorticity”

10 Balance laws.

10.1 Conservation of mass.

dtρ+ ρ∇ · u = 0, i.e., dt ln ρ = −∇ · u

10.2 Conservation of momentum.

ρdtu = −∇p+ ρ∇φ+ F , i.e.,

dtu =
−∇p

ρ
+∇φ+

F

ρ

11 Rotating coordinate frame.

Let dt continue to denote the convective derivative with
respect to an inertial (i.e. “fixed” or nonrotating) reference
frame. Let d′t denote the convective derivative in a frame
that is rotating with angular velocity Ω. Then:

dt = (d′t +Ω×)

dt
2 = (d′t +Ω×)(d′t +Ω×)

= d′t
2
+ 2Ω× d′t +Ω×Ω×+

�
�d′tΩ×)

Applying these operator identities to a moving position
vector r(t) (e.g. of a convected fluid element) gives the
relations

u = dtr = u′ +Ω× r

dtu = (d′t +Ω×)(u′ +Ω× r)

= d′tu
′ + 2Ω× u′ +Ω×Ω× r

= d′tu
′ + 2Ω× u′ − Ω2r⊥

= d′tu
′ + 2Ω× u′ −∇φc

where r⊥ denotes the projection of r onto the plane per-
pendicular to Ω and φc := Ω2 · |r⊥|

2/2 is a potential for the
centripetal acceleration.

Since ∇ · (Ω× r) = 0, ∇ · u = ∇ · u′, so mass conservation
looks the same: dtρ+ ρ∇ · u′ = 0, i.e., dt ln ρ = −∇ · u′.

The momentum equation now writes:

d′tu
′ + 2Ω× u′ =

−∇p

ρ
+∇ (φ+ φc)

︸ ︷︷ ︸

Call Φ

+
F

ρ
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Henceforth we concern ourselves only with the rotating ref-
erence frame and dispense with primes.

12 The vorticity equation.

This section follows [1] section 2.4. Define the vorticity to
be the curl of the fluid velocity: ω := ∇ × u. We wish
to obtain an evolution equation for the vorticity from the
momentum equation. Recall that dtu = ∂tu + u · ∇u. To
recast this in terms of the vorticity, consider the identity

ω × u = u · ∇u−∇
(u2

2

)

So the momentum equation writes:

∂tu+ (2Ω+ ω)
︸ ︷︷ ︸

Call ωa

×u =
−∇p

ρ
+∇

(

Φ−
u2

2

)

+
F

ρ

To obtain an equation for vorticity, we take the curl of both
sides. This involves:

∇× (ωa × u) = ∇ · (uωa − ωau)

= ωa∇ · u+ u · ∇ωa −����u∇ · ωa − ωa · ∇u,

∇×
−∇p

ρ
=

∇ρ×∇p

ρ2
.

Hence we get the vorticity equation:

dtωa = ωa · ∇u− ωa∇ · u+
∇ρ×∇p

ρ2
+∇×

F

ρ
,

where, recall, ωa := ω + 2Ω

13 Potential vorticity.

This section follows [1] section 2.5. Let λ be some scalar
fluid property.

Divide the vorticity equation by ρ and use ∇ · u = −1
ρ dtρ

to eliminate ∇ · u:

dtωa

ρ
− ωa

dtρ

ρ2
︸ ︷︷ ︸

dt

(
ωa

ρ

)

=
ωa

ρ
· ∇u+

∇ρ×∇p

ρ3
+

1

ρ
∇×

F

ρ

Take the dot product of ∇λ with this equation and get:

dt
(ωa

ρ

)
· ∇λ =

ωa

ρ
· (∇u) · ∇λ

+∇λ ·
∇ρ×∇p

ρ3
+

∇λ

ρ
· ∇ ×

F

ρ

Try to rewrite the left hand side as a derivative:

dt
(ωa

ρ

)
· ∇λ = dt

(ωa

ρ
· ∇λ

)

−
ωa

ρ
· dt∇λ

But

dt∇λ = ∂t∇λ+ u · ∇∇λ

= ∇∂tλ+∇(u · ∇λ) + u · ∇∇λ−∇(u · ∇λ)

= ∇dtλ−∇u · ∇λ

So the left hand side becomes

dt

(ωa

ρ
· ∇λ

)

−
ωa

ρ
· ∇dtλ+

ωa

ρ
· ∇u · ∇λ,

giving us the potential vorticity equation

dt

(ωa

ρ
· ∇λ

)

=
ωa

ρ
· ∇dtλ+∇λ ·

∇ρ×∇p

ρ3
+

∇λ

ρ
· ∇ ×

F

ρ

We define the potential vorticity to be Π := ωa

ρ · ∇λ.
The potential vorticity equation tells us that:

If

1. λ is a conserved quantity for each fluid element,
i.e., dtλ = 0,

2. the frictional force is negligible, i.e., F ≃ 0,

3. and either

(a) the fluid is barotropic, i.e., ∇ρ×∇p = 0,
or

(b) λ is a function only of p and ρ,

then the potential vorticity Π = (ω+2Ω)
ρ · ∇λ is con-

served, i.e., dtΠ = 0.

Examples of such conserved scalar fluid properties in-
clude the entropy, the potential temperature, or the den-
sity/temperature in the Boussinesq approximation.
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