Derivation of the Boussinesq and subtract the balance of kinetic energy (i.e. \mathbf{u} dot moApproximation
by Alec Johnson, April 26, 2007

1 Definition of Quantities.

$\mathbf{u}:=$ velocity field
$\rho:=$ mass density
$p:=$ pressure
$\mathrm{g}:=$ gravity
$\underline{\underline{\tau}}:=$ total stress
$\frac{\bar{\sigma}}{\bar{e}}:=$ viscous stress
$\begin{aligned} \bar{e} & :=\text { heat energy per mass } \\ T & =\text { temperature }\end{aligned}$
$T:=$ temperature
$\mathbf{q}:=$ heat flux
$\kappa:=$ heat conductivity
$R:=$ gas constant
$c_{v}:=$ specific heat at constant volume
$c_{p}:=$ specific heat at constant pressure
$\gamma:=c_{p} / c_{v}$

2 Overview

The Boussinesq equations for stratified flow (e.g. of the atmosphere or ocean) assume that fluid flow is incompressible yet convects a diffusive quantity that endows the fluid with positive or negative buoyancy. This buoyancy quantity is identified with a linear function of the deviation of temperature or density from adiabatic hydrostatic balance.

3 Balance laws.

To derive these equations we begin by writing balance equations for mass, momentum, and thermal energy.

3.1 Conservation of mass.

$d_{t} \rho+\rho \nabla \cdot \mathbf{u}=0$, i.e., $d_{t} \ln \rho=-\nabla \cdot \mathbf{u}$. The Boussinesq approximation assumes that $\nabla \cdot \mathbf{u} \simeq 0$.

3.2 Conservation of momentum.

$$
\rho d_{t} \mathbf{u}=\rho \mathbf{g}-\nabla p+\nabla \cdot \underline{\underline{\sigma}}
$$

where the viscous stress tensor is given by $\underline{\underline{\sigma}}=\lambda \nabla \cdot \mathbf{u} \underline{\underline{\delta}}+$ $\mu\left(\nabla \mathbf{u}+\nabla \mathbf{u}^{\mathrm{tr}}\right)$. (With generality $\lambda=\frac{-2}{3} \mu$.) Assuming that $\nabla \lambda \simeq 0, \nabla \mu \simeq 0$, and $\nabla \cdot \mathbf{u} \simeq 0$, this simplifies to:

$$
\rho d_{t} \mathbf{u} \simeq \rho \mathbf{g}-\nabla p+\mu \nabla^{2} \mathbf{u}
$$

3.3 Thermal energy.

The general balance of thermal energy is:

$$
\rho d_{t} e=\underline{\underline{\tau}}: \nabla \mathbf{u}-\nabla \cdot \mathbf{q}
$$

where $\underline{\underline{\tau}}=\underline{\underline{\sigma}}+p \underline{\underline{\delta}}$. To obtain this equation, write the balance of energy,

$$
\rho d_{t}\left(e+u^{2} / 2\right)=\nabla \cdot(\underline{\underline{\tau}} \cdot \mathbf{u})-\nabla \cdot \mathbf{q}
$$

mentum balance):

$$
\rho d_{t}\left(u^{2} / 2\right)=(\nabla \cdot \underline{\underline{\tau}}) \cdot \mathbf{u} .
$$

In the thermal energy balance, we neglect the term representing the contribution of the viscous stress $\underline{\underline{\sigma}}$ to thermal energy production. Then

$$
\rho d_{t} e+p \nabla \cdot \mathbf{u}=-\nabla \cdot \mathbf{q} .
$$

We now simplify each term. We simplify the terms in the left hand side using the ideal gas relations $e=c_{v} T$ and $p=\rho R T$ respectively

$$
\rho d_{t} e=\rho c_{v} d_{t} T
$$

and using $\ln p=\ln \rho+\ln T$,
$p \nabla \cdot \mathbf{u}=-p d_{t} \ln \rho$
$=p d_{t}(\ln T-\ln p)$
$=p d_{t} \ln T-d_{t} p$
$=\rho R d_{t} T-d_{t} p$.
So the left hand side is $\rho \underbrace{\left(c_{v}+R\right)}_{\text {Call } c_{p}} d_{t} T-d_{t} p$.
To simplify the right hand side, assume $\mathbf{q}=-\tilde{\kappa} \nabla T$. As sume that $\nabla \tilde{\kappa} \simeq 0$. We get:

$$
\begin{aligned}
& \rho c_{p} d_{t} T \simeq d_{t} p+\tilde{\kappa} \nabla^{2} T, \text { i.e., } \\
& d_{t} T \simeq \frac{1}{\rho c_{p}} d_{t} p+\kappa \nabla^{2} T, \text { where } \kappa:=\frac{\tilde{\kappa}}{c_{p} \rho} .
\end{aligned}
$$

We will use that $\nabla \kappa \simeq 0$.

4 Hydrostatic balance.

A stratified fluid is said to be in hydrostatic equilibrium if it is at rest $(\mathbf{u}=0)$ and the fluid state variables are simply functions of height z Let $\rho_{0}(z), p_{0}(z), T_{0}(z), \mathbf{u}=0$ be the functions of heigh z. Let $\rho_{0}(z), p_{0}(z), T_{0}(z), \mathbf{u}=0$ be the Conservation of an Conssion static force balance of pressure and gravitational forces:
$d_{z} p_{0}=-\rho_{0} g$.

5 Adiabatic hydrostatic equilib-

 rium.A hydrostatic equilibrium is said to be stable if for any test volume selected from any level of the column of fluid if we transport it to another fluid level and adiabatically change its pressure to match the pressure at the new level the test volume will experience a buoyancy force in a direction that pushes it toward its original level. (Recall that a test volume experiences a buoyancy force when its density differs from the density of the surrounding fuid.) If such an adiabatically transported test volume never experiences a buoyancy force, the fluid column is said to be in
neutral equilibrium. Such a neutrally stable atmosphere is called an isentropic or adiabatic atmosphere. The entropy of such an atmosphere is constant with height. This holds because (1) entropy is an invariant of an adiabatic process, (2) entropy is a function of pressure and density, and (3) in a neutrally stable atmosphere the pressure and density of an adiabatically transported test volume always match the surrounding fluid.

6 Aside: ideal gas hydrostatic equilibrium.

6.1 Entropy.

To determine expressions for isentropic equilibrium, we write expressions for the differential of entropy
$d s=\frac{d q}{T}=\frac{d e+p d v}{T}=c_{v} \frac{d T}{T}+R \frac{d v}{v}=c_{v} d \ln T+R d \ln v$
$=d\left(c_{v} \ln T-R \ln \rho\right)=c_{v} d \ln \left(T \rho\left(-\frac{R}{c_{v}}=1-\gamma\right)\right)$
$=d\left(c_{v} \ln p-c_{p} \ln \rho\right)=c_{v} d \ln \left(p \rho\left(-\frac{c_{p}}{c_{v}}=-\gamma\right)\right)$
$=d\left(c_{p} \ln T-R \ln p\right)=c_{p} d \ln \left(T p^{\left(-\frac{R}{c_{p}}=\frac{1-\gamma}{\gamma}\right)}\right)$

6.2 Ideal gas isentropic relations.

For an isentropic atmosphere, $d_{z} s(z)=0$, so the entropy differential formulas yield isentropic relations between state variables at heights z_{0} and z :

$$
\begin{aligned}
& \frac{T}{T_{0}}=\left(\frac{\rho}{\rho_{0}}\right)^{\gamma-1}, \quad\left(\frac{\rho}{\rho_{0}}\right)=\left(\frac{p}{p_{0}}\right)^{1 / \gamma}, \\
& \left(\frac{T}{T_{0}}\right)^{\gamma}=\left(\frac{\rho}{\rho_{0}}\right)^{\gamma-1}, \text { and lastly, } \frac{T}{T_{0}}=\left(\frac{p}{p_{0}}\right)^{\frac{\gamma-1}{\gamma}} .
\end{aligned}
$$

This last relation provides us an explicit formula for the potential temperature. The potential temperature is defined to be the temperature that a parcel of air would have if it were brought adiabatically to a reference temperature. Thus, if we take p_{0} as the reference temperature (typically 1000 mbars), the potential temperature is

$$
\theta:=T_{0}=T\left(\frac{p}{p_{0}}\right)^{\frac{\gamma-1}{\gamma}}
$$

6.3 Aside: ideal gas adiabatic lapse rate.

Recall isentropy: $d \ln T=\frac{R}{c_{p}} d \ln p$.
Recall hydrostatic force balance: $d_{z} p=-\rho g$
Dividing by p and using $p=\rho R T$ gives $d_{z} \ln p=\frac{-g}{T R}$.
Multiplying by $\frac{R}{c_{p}}$ gives $d_{z} \ln T=\frac{-g}{T c_{p}}$, i.e., $d_{z} T=\frac{-g}{c_{p}}$

7 Perturbation from hydrostatic

balance.

For each state variable q let $q_{0}(z)$ represent a stratified hydrostatic balance. Write the state variables as perturbations from this hydrostatic balance:
$q=q_{0}+q^{\prime}$.
7.1 Perturbation from hydrostatic mentum balance.

Recall the balance law that we derived for moment

$$
\rho d_{t} \mathbf{u}=\rho \mathbf{g}-\nabla p+\mu \nabla^{2} \mathbf{u},
$$

and subtract the hydrostatic balance relation

$$
0=\rho_{0} \mathbf{g}-\nabla p_{0}
$$

We get

$$
\left(\rho_{0}+\rho^{\prime}\right) d_{t} \mathbf{u}=\rho^{\prime} \mathbf{g}-\nabla p^{\prime}+\mu \nabla^{2} \mathbf{u} .
$$

Dividing by ρ_{0} gives

$$
\left(1+\frac{\rho^{\prime}}{\rho_{0}}\right) d_{t} \mathbf{u}=\frac{\rho^{\prime}}{\rho_{0}} \mathbf{g}-\frac{1}{\rho_{0}} \nabla p^{\prime}+\nu \nabla^{2} \mathbf{u}
$$

where $\nu:=\frac{\mu}{\rho_{0}}$ is the kinematic viscosity. Invol Boussinesq assumption $\rho^{\prime} \ll \rho_{0}$ gives:

$$
d_{t} \mathbf{u} \simeq \frac{\rho^{\prime}}{\rho_{0}} \mathbf{g}-\frac{1}{\rho_{0}} \nabla p^{\prime}+\nu \nabla^{2} \mathbf{u} .
$$

7.2 Perturbation from hydrostatic th energy balance.

Substitute the perturbation expansions into the bala that we derived for thermal energy:

$$
d_{t}\left(T_{0}+T^{\prime}\right)=\frac{d_{t}\left(p_{0}+p^{\prime}\right)}{\left(\rho_{0}+\rho^{\prime}\right) c_{p}}+\kappa \nabla^{2}\left(T_{0}+T^{\prime}\right)
$$

and subtract the hydrostatic balance relation,

$$
d_{t} T_{0}=\frac{d_{t} p_{0}}{\rho_{0} c_{p}}+\kappa \nabla^{2} T_{0} .
$$

Invoking the Boussinesq assumption $\rho^{\prime} \ll \rho_{0}$, we g

$$
d_{t} T^{\prime}=\frac{d_{t} p^{\prime}}{\rho_{0} c_{p}}+\kappa \nabla^{2} T^{\prime} .
$$

7.3 Perturbation from hydrostatic tropic thermal energy balance.

We wish to choose a reference hydrostatic equilibr which we can neglect the term $\frac{d_{t} \tilde{p}}{\rho_{0} c_{p}}$.

I claim that we can neglect this term if we assu the hydrostatic equilibrium is isentropic. In this the state of a convected volume element agrees hydrostatic equilibrium, this agreement will peribriu he difference will likewise tend to persist (assuming diffusion).

This term essentially represents the contribution to of change of the temperature perturbation due to t ation of the hydrostatic equilibrium from isentropy.

7.4 Perturbation from hydrostatic equilib- Ertel's Potential Vorticity Theorem:

 rium as a perturbation from isentropic hydrostatic equilibrium.In general the atmosphere is close to a hydrostatic equilibrium, but that equilibrium is not typically isentropic.
Expand each state variable q as $q=q_{a}(z)+q_{1}(z)+q^{\prime}(z)$, where $q_{a}+q_{1}=: q_{0}$ represents the actual hydrostatic equilibrium of the atmosphere, and where q_{a} represents some isentropic hydrostatic equilibrium. Let $\tilde{q}=q_{1}(z)+q^{\prime}(z)$, the perturbation from isentropic equilibrium.
Recall that $d \ln p=d \ln \rho+d \ln T$. Assuming that perturbations from isentropy are small, this means that $\frac{\tilde{\tilde{p}}}{p_{0}} \simeq \frac{\tilde{\rho}}{\rho_{0}}+\frac{\tilde{T}}{T_{0}}$. That is, $\tilde{T} \simeq\left(\frac{-T_{0}}{\rho_{0}}\right)\left(\tilde{\rho}-\frac{\rho_{0}}{p_{0}} \tilde{p}\right)$. We use this to eliminate T from the heat diffusion equation, $d_{t} \tilde{T}=+\kappa \nabla^{2} \tilde{T}$:

$$
d_{t}\left(\tilde{\rho}-\frac{\rho_{0}}{p_{0}} \tilde{p}\right)=+\kappa \nabla^{2}\left(\tilde{\rho}-\frac{\rho_{0}}{p_{0}} \tilde{p}\right)
$$

Using $\tilde{q}=q_{1}+q^{\prime}$ and $\nabla^{2} q_{1} \simeq 0$,
$d_{t}\left(\rho^{\prime}-\frac{\rho_{0}}{p_{0}} p^{\prime}\right)+\mathbf{u} \cdot \underbrace{\hat{\mathbf{z}}_{z_{z}}\left(\rho_{1}-\frac{\rho_{0}}{p_{0}} p_{1}\right)}_{\text {Call }-b}=+\kappa \nabla^{2}\left(\rho^{\prime}-\frac{\rho_{0}}{p_{0}} p^{\prime}\right)$.
by Alec Johnson, April 26, 2007

9 Definition of Quantities.

$\mathbf{u}=$ velocity field
$\omega=\nabla \times \mathbf{u}=$ vorticity
$\rho=$ mass density
$p=$ pressure
$\mathbf{g}=\nabla \phi=$ gravity
$d_{t}=$ convective derivative
$\Omega=$ angular speed of reference frame
$\omega_{a}=\omega+2 \boldsymbol{\Omega}=$ "absolute vorticity"

10 Balance laws.

10.1 Conservation of mass.
$d_{t} \rho+\rho \nabla \cdot \mathbf{u}=0$, i.e., $d_{t} \ln \rho=-\nabla \cdot \mathbf{u}$

10.2 Conservation of momentum.

$$
\rho d_{t} \mathbf{u}=-\nabla p+\rho \nabla \phi+\mathcal{F}, \text { i.e. },
$$

We neglect the derivatives of the pressure deviation, $d_{t} p^{\prime}$
and $\nabla^{2} p^{\prime}$. (It seems that this is justified by the quasigeostrophic and quasihydrostatic balance assumptions.)

$$
d_{t} \mathbf{u}=\frac{-\nabla p}{\rho}+\nabla \phi+\frac{\mathcal{F}}{\rho}
$$

This gives an evolution equation for the perturbation in the density:

$$
d_{t} \rho^{\prime}-b \mathbf{u} \cdot \hat{\mathbf{z}}=+\kappa \nabla^{2} \rho^{\prime}
$$

8 Boussinesq system.

The full set of Boussinesq equations is thus:

$$
\begin{aligned}
& \nabla \cdot \mathbf{u}=0, \\
& d_{t} \mathbf{u}=-\frac{\rho^{\prime}}{\rho_{0}} g \hat{\mathbf{z}}-\frac{1}{\rho_{0}} \nabla p^{\prime}+\nu \nabla^{2} \mathbf{u}
\end{aligned}
$$

$$
d_{t} \rho^{\prime}=b \mathbf{u} \cdot \hat{\mathbf{z}}+\kappa \nabla^{2} \rho^{\prime}
$$

In order to reduce the number of parameters by one, we define the "buoyancy frequency" N and the rescaled temperature perturbation θ and pressure p by

$$
\begin{aligned}
& N^{2}:=\frac{g b}{\rho_{0}} \\
& \rho^{\prime}=\sqrt{\frac{b \rho_{0}}{g}} \theta \\
& p=\frac{p^{\prime}}{\rho_{0}}
\end{aligned}
$$

This gives a system with a minimal number of free parameters:

$$
\begin{aligned}
& \nabla \cdot \mathbf{u}=0 \\
& d_{t} \mathbf{u}=-N \theta \hat{\mathbf{z}}-\nabla p+\nu \nabla^{2} \mathbf{u}, \\
& d_{t} \theta=N \mathbf{u} \cdot \hat{\mathbf{z}}+\kappa \nabla^{2} \theta
\end{aligned}
$$

11 Rotating coordinate frame.

Let d_{t} continue to denote the convective derivative with respect to an inertial (i.e. "fixed" or nonrotating) reference frame. Let d_{t}^{\prime} denote the convective derivative in a frame that is rotating with angular velocity $\boldsymbol{\Omega}$. Then:
$d_{t}=\left(d_{t}^{\prime}+\boldsymbol{\Omega} \times\right)$
$d_{t}{ }^{2}=\left(d_{t}^{\prime}+\boldsymbol{\Omega} \times\right)\left(d_{t}^{\prime}+\boldsymbol{\Omega} \times\right)$

$$
\left.={d_{t}^{\prime}}^{2}+2 \boldsymbol{\Omega} \times d_{t}^{\prime}+\boldsymbol{\Omega} \times \boldsymbol{\Omega} \times+d^{\prime} \boldsymbol{\Omega} \times\right)
$$

Applying these operator identities to a moving position vector $\mathbf{r}(t)$ (e.g. of a convected fluid element) gives the relations

$$
\begin{aligned}
\mathbf{u} & =d_{t} \mathbf{r}=\mathbf{u}^{\prime}+\boldsymbol{\Omega} \times \mathbf{r} \\
d_{t} \mathbf{u} & =\left(d_{t}^{\prime}+\boldsymbol{\Omega} \times\right)\left(\mathbf{u}^{\prime}+\boldsymbol{\Omega} \times \mathbf{r}\right) \\
& =d_{t}^{\prime} \mathbf{u}^{\prime}+2 \boldsymbol{\Omega} \times \mathbf{u}^{\prime}+\boldsymbol{\Omega} \times \boldsymbol{\Omega} \times \mathbf{r} \\
& =d_{t}^{\prime} \mathbf{u}^{\prime}+2 \boldsymbol{\Omega} \times \mathbf{u}^{\prime}-\Omega^{2} \mathbf{r}_{\perp} \\
& =d_{t}^{\prime} \mathbf{u}^{\prime}+2 \boldsymbol{\Omega} \times \mathbf{u}^{\prime}-\nabla \phi_{c}
\end{aligned}
$$

where \mathbf{r}_{\perp} denotes the projection of \mathbf{r} onto the plane perpendicular to $\boldsymbol{\Omega}$ and $\phi_{c}:=\Omega^{2} \cdot\left|\mathbf{r}_{\perp}\right|^{2} / 2$ is a potential for the centripetal acceleration.
Since $\nabla \cdot(\boldsymbol{\Omega} \times \mathbf{r})=0, \nabla \cdot \mathbf{u}=\nabla \cdot \mathbf{u}^{\prime}$, so mass conservation looks the same: $d_{t} \rho+\rho \nabla \cdot \mathbf{u}^{\prime}=0$, i.e., $d_{t} \ln \rho=-\nabla \cdot \mathbf{u}^{\prime}$.
The momentum equation now writes:

$$
d_{t}^{\prime} \mathbf{u}^{\prime}+2 \boldsymbol{\Omega} \times \mathbf{u}^{\prime}=\frac{-\nabla p}{\rho}+\nabla \underbrace{\left(\phi+\phi_{c}\right)}_{\text {Call } \Phi}+\frac{\mathcal{F}}{\rho}
$$

Henceforth we concern ourselves only with the rotating reference frame and dispense with primes.

12 The vorticity equation.

This section follows [1] section 2.4. Define the vorticity to be the curl of the fluid velocity: $\omega:=\nabla \times \mathbf{u}$. We wish to obtain an evolution equation for the vorticity from the momentum equation. Recall that $d_{t} \mathbf{u}=\partial_{t} \mathbf{u}+\mathbf{u} \cdot \nabla \mathbf{u}$. To recast this in terms of the vorticity, consider the identity

$$
\omega \times \mathbf{u}=\mathbf{u} \cdot \nabla \mathbf{u}-\nabla\left(\frac{u^{2}}{2}\right)
$$

So the momentum equation writes:

$$
\partial_{t} \mathbf{u}+\underbrace{(2 \boldsymbol{\Omega}+\omega)}_{\text {Call } \omega_{a}} \times \mathbf{u}=\frac{-\nabla p}{\rho}+\nabla\left(\Phi-\frac{u^{2}}{2}\right)+\frac{\mathcal{F}}{\rho}
$$

To obtain an equation for vorticity, we take the curl of both sides. This involves:

$$
\begin{aligned}
\nabla \times\left(\omega_{a} \times \mathbf{u}\right) & =\nabla \cdot\left(\mathbf{u} \omega_{a}-\omega_{a} \mathbf{u}\right) \\
& =\omega_{a} \nabla \cdot \mathbf{u}+\mathbf{u} \cdot \nabla \omega_{a}-\underline{\mathbf{u}} \nabla \cdot \omega_{a}-\omega_{a} \cdot \nabla \mathbf{u}, \\
\nabla \times \frac{-\nabla p}{\rho} & =\frac{\nabla \rho \times \nabla p}{\rho^{2}} .
\end{aligned}
$$

Hence we get the vorticity equation

$$
d_{t} \omega_{a}=\omega_{a} \cdot \nabla \mathbf{u}-\omega_{a} \nabla \cdot \mathbf{u}+\frac{\nabla \rho \times \nabla p}{\rho^{2}}+\nabla \times \frac{\mathcal{F}}{\rho}
$$

$$
\text { where, recall, } \omega_{a}:=\omega+2 \Omega
$$

13 Potential vorticity.

This section follows [1] section 2.5. Let λ be some scalar fluid property.

Divide the vorticity equation by ρ and use $\nabla \cdot \mathbf{u}=\frac{-1}{\rho} d_{t} \rho$ to eliminate $\nabla \cdot \mathbf{u}$:

$$
\underbrace{\frac{d_{t} \omega_{a}}{\rho}-\omega_{a} \frac{d_{t} \rho}{\rho^{2}}}_{d_{t}\left(\frac{\omega_{a}}{\rho}\right)}=\frac{\omega_{a}}{\rho} \cdot \nabla \mathbf{u}+\frac{\nabla \rho \times \nabla p}{\rho^{3}}+\frac{1}{\rho} \nabla \times \frac{\mathcal{F}}{\rho}
$$

Take the dot product of $\nabla \lambda$ with this equation and get:

$$
\begin{aligned}
d_{t}\left(\frac{\omega_{a}}{\rho}\right) \cdot \nabla \lambda= & \frac{\omega_{a}}{\rho} \cdot(\nabla \mathbf{u}) \cdot \nabla \lambda \\
& +\nabla \lambda \cdot \frac{\nabla \rho \times \nabla p}{\rho^{3}}+\frac{\nabla \lambda}{\rho} \cdot \nabla \times \frac{\mathcal{F}}{\rho}
\end{aligned}
$$

Try to rewrite the left hand side as a derivative:

$$
d_{t}\left(\frac{\omega_{a}}{\rho}\right) \cdot \nabla \lambda=d_{t}\left(\frac{\omega_{a}}{\rho} \cdot \nabla \lambda\right)-\frac{\omega_{a}}{\rho} \cdot d_{t} \nabla \lambda
$$

But

$$
\begin{aligned}
d_{t} \nabla \lambda & =\partial_{t} \nabla \lambda+\mathbf{u} \cdot \nabla \nabla \lambda \\
& =\nabla \partial_{t} \lambda+\nabla(\mathbf{u} \cdot \nabla \lambda)+\mathbf{u} \cdot \nabla \nabla \lambda-\nabla(\mathbf{u} \cdot \nabla \lambda) \\
& =\nabla d_{t} \lambda-\nabla \mathbf{u} \cdot \nabla \lambda
\end{aligned}
$$

$$
d_{t}\left(\frac{\omega_{a}}{\rho} \cdot \nabla \lambda\right)-\frac{\omega_{a}}{\rho} \cdot \nabla d_{t} \lambda+\frac{\omega_{a}}{\rho} \cdot \nabla \mathbf{u} \cdot \nabla \lambda,
$$

giving us the potential vorticity equation
$d_{t}\left(\frac{\omega_{a}}{\rho} \cdot \nabla \lambda\right)=\frac{\omega_{a}}{\rho} \cdot \nabla d_{t} \lambda+\nabla \lambda \cdot \frac{\nabla \rho \times \nabla p}{\rho^{3}}+\frac{\nabla \lambda}{\rho}$. We define the potential vorticity to be Π :=
The

1. λ is a conserved quantity for each fluid elen i.e., $d_{t} \lambda=0$,
2. the frictional force is negligible, i.e., $\mathcal{F} \simeq 0$,
3. and either
(a) the fluid is barotropic, i.e., $\nabla \rho \times \nabla p=0$ or
(b) λ is a function only of p and ρ,
then the potential vorticity $\Pi=\frac{(\omega+2 \boldsymbol{\Omega})}{\rho} \cdot \nabla \lambda$ is served, i.e., $d_{t} \Pi=0$.

Examples of such conserved scalar fluid proper clude the entropy, the potential temperature, or t sity/temperature in the Boussinesq approximation.

References

[1] Joseph Pedlosky, Geophysical Fluid Dynam Ed., Springer © 1987.
[2] Pijush Kundu, Fluid Mechanics, Academi (C) 1990.
[3] Ertel H., 1942, Ein neuer hydrodynamischer satz. Meteor. Z, 59, 277-281.

