Projection onto a given diver- 2.3 gence

by Alec Johnson, June 13, 2007

1 Abstract Problem

1.1 Definitions

Let *H* denote a Hilbert space with inner product denoted by \langle , \rangle and norm $\| \cdot \|$ defined by $\| \mathbf{w} \| = \langle \mathbf{w}, \mathbf{w} \rangle^{1/2} \quad \forall \mathbf{w}.$

1.2 Problem

Given vectors \mathbf{v} and \mathbf{s} , minimize $\|\mathbf{u} - \mathbf{v}\|^2$ subject to the constraint that div $\mathbf{u} = \mathbf{s}$.

1.3 Solution framework

Suppose that **u** is the minimizer. Let $\mathbf{f} = \mathbf{u} + \mathbf{w}$ also satisfy div $\mathbf{f} = \mathbf{s}$, i.e., div $\mathbf{w} = 0$. Now $\|\mathbf{f} - \mathbf{v}\|^2 = \|(\mathbf{u} - \mathbf{v}) + \mathbf{w}\|^2 = \|\mathbf{u} - \mathbf{v}\|^2 + 2\langle \mathbf{u} - \mathbf{v}, \mathbf{w} \rangle + \|\mathbf{w}\|^2$. Since we could replace \mathbf{w} with its opposite, this is minimized at $\mathbf{w} = 0$ only if $\langle \mathbf{u} - \mathbf{v}, \mathbf{w} \rangle = 0$. (That is, **u** is the *orthogonal* projection of **v** onto the linear manifold of all **f** satisfying div $\mathbf{f} = \mathbf{s}$.)

In general we will claim that the minimizer ${\bf u}$ is specified by

$$(\mathbf{u} - \mathbf{v}) = \operatorname{grad} \lambda,\tag{1}$$

where λ is restricted to belong to a class of functions satisfying the adjoint property

$$\langle \operatorname{grad} \lambda, \mathbf{w} \rangle = -\langle \lambda, \operatorname{div} \mathbf{w} \rangle.$$
 (2)

In each particular case, we show that λ will satisfy this adjoint property if we require λ to satisfy an appropriate Dirichlet boundary condition of the form $\lambda = 0$ on $\partial\Omega$.

Since div $\mathbf{w} = 0$, it is enough for there to exist a λ satisfying (8) and satisfying (7). Substituting (8) into the constraint div $\mathbf{u} = 0$ gives the abstract Poisson equation

$$\operatorname{div}\operatorname{grad}\lambda = \mathbf{s} - \operatorname{div}\mathbf{v}.\tag{3}$$

So the problem reduces to showing that there is a unique λ that solves the Poisson equation (9) from a class of vectors λ which satisfy the adjoint property (7).

2 Continuum problem

2.1 Definitions of continuum problem

Let Ω be a nice domain.

For \mathbf{u}, \mathbf{w} vector fields on Ω , let $\langle \mathbf{u}, \mathbf{w} \rangle := \int_{\Omega} \mathbf{u} \cdot \mathbf{w}$.

2.2 Statement of continuum problem

Let **v** be a vector field on the domain Ω .

Let σ be a desired divergence.

Find **u** that minimizes $\|\mathbf{u} - \mathbf{v}\|^2$ subject to the constraint that $\nabla \cdot \mathbf{u} = \sigma$ in Ω .

2.3 Solution

For this continuum problem there exists a unique solution to the Poisson equation (9) with Dirichlet boundary conditions $\lambda = 0$ on $\partial\Omega$, and such λ indeed satisfies the adjoint property (7):

$$\begin{array}{l} \langle \operatorname{grad} \lambda, \mathbf{w} \rangle = \int_{\Omega} (\nabla \lambda) \cdot \mathbf{w} = \int_{\Omega} \nabla \cdot (\lambda \mathbf{w}) - \int_{\Omega} \lambda \nabla \cdot \mathbf{w} \\ = -\langle \lambda, \nabla \cdot \mathbf{w} \rangle, \text{ as needed.} \end{array}$$

3 Definitions for discrete calculus

Let $\langle \mathbf{f}, \mathbf{g} \rangle_a^b = \sum_{i=a}^b f_i g_i$ denote a generalized inner product. Let $E^k = \mathbf{f} \mapsto \{f_{i+k}\}_{i \in \mathbb{Z}}$ be the shift operator. Let $E^+ := E^{+1}$ and $E^- := E^{-1}$. Let $D^+ := E^+ - E^0$

Let $D^+ := E^+ - E^0$ Let $D^- := E^0 - E^-$

Observe that $\langle \mathbf{f}, \mathbf{g} \rangle_a^b = \langle E^k \mathbf{f}, E^k \mathbf{g} \rangle_{a-k}^{b-k}$.

4 Staggered discrete 1D problem

4.1 Problem

Given the scalar sequences $\mathbf{v} = \{v_i\}_{i=1}^m$ and $\mathbf{s} = \{s_i\}_{i=1}^{m-1}$, find $\mathbf{u} = \{u_i\}_{i=1}^m$ that minimizes $\|\mathbf{u} - \mathbf{v}\| = \sum_{i=1}^m (u_i - v_i)^2$, subject to the constraint that $(D^+\mathbf{u})_i = s_i$ for $i = 1, \ldots, (m-1)$.

4.2 Solution

Adopt the following definitions

Let div $= D^+$.

Let grad $= D^{-}$.

Require that λ satisfy the Dirichlet boundary conditions

$$\lambda_0 = 0 = \lambda_m. \tag{4}$$

We need to show that for such λ the following properties hold.

1. λ satisfies the adjoint property. Indeed,

$$\langle \operatorname{grad} \lambda, \mathbf{w} \rangle := \langle D^{-}\lambda, \mathbf{w} \rangle_{1}^{m} = \langle \lambda, \mathbf{w} \rangle_{1}^{m} - \langle E^{-}\lambda, \mathbf{w} \rangle_{1}^{m} = \langle \lambda, \mathbf{w} \rangle_{1}^{m} - \langle \lambda, E^{+}\mathbf{w} \rangle_{0}^{m-1} = -\langle \lambda, D^{+}\mathbf{w} \rangle_{1}^{m-1} + \lambda_{m} w_{m} - \lambda_{0} w_{1} = 0, \text{ using (4) and div } \mathbf{w} = 0.$$

2. There is a unique λ that satisfies the Poisson equation (9).

To show this, we write out the Poisson equation (9) explicitly as a linear system:

$$-\lambda_{i+1} + 2\lambda_i - \lambda_{i-1} = g_i \text{ for } 1 \le i \le (m-1),$$

where $\mathbf{g} := \operatorname{div} \mathbf{v} - \mathbf{s}.$

Using the Dirichlet boundary conditions $\lambda_0 = 0 = \lambda_m$ and writing the system in matrix form, we see that we have a tridiagonal system:

$$\begin{bmatrix} 2 & -1 & & \\ -1 & 2 & \ddots & \\ & \ddots & \ddots & \ddots \\ & & \ddots & 2 & -1 \\ & & & -1 & 2 \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_{m-2} \\ \lambda_{m-1} \end{bmatrix} = \begin{bmatrix} g_1 \\ g_2 \\ \vdots \\ g_{m-2} \\ g_{m-1} \end{bmatrix}$$

Staggered discretized 1D prob-5 lems

5.1Staggered divergence problem

Find **u** that minimizes $\|\mathbf{u} - \mathbf{v}\| := \sum_{i=1}^{m} (u_i - v_i)^2$ subject to $\frac{u_{i+1}-u_i}{dx} = s_{i+1/2}$ for $i = 1, \dots, (m-1)$.

Solution: Let $\tilde{s}_i = (dx) s_{i+1/2}$, and map onto the previous problem. (It's also helpful to consider a mapping $\tilde{\lambda}_i$ = $\lambda_{i+1/2}.)$

5.2Staggered vector problem

Find **u** that minimizes $\|\mathbf{u} - \mathbf{v}\| := \sum_{i=1}^{n} (u_{i-1/2} - v_{i-1/2})^2$ subject to $\frac{u_{i+1/2} - u_{i-1/2}}{dr} = s_i$ for $1 \le i \le (n-1)$.

Solution: Let $\tilde{u}_i = u_{i-1/2}$, let $\tilde{\mathbf{s}} = (dx)\mathbf{s}$, let m = n - 1, and map onto the previous problem.

Α Even/odd discrete 1D problem

A.1Problem

Find $\mathbf{u} = \{u_i\}_{i=0}^{m+1}$ that minimizes $\|\mathbf{u} - \mathbf{v}\| = \sum_{i=0}^{m+1} (u_i - v_i)^2$, subject to the constraint that $(D\mathbf{u})_i = s_i$ for i = $1, \ldots, m$, where $D := E^+ - E^-$.

A.2Solution

Let n = m + 1.

- Let div : $\mathbf{u} \mapsto \{u_{i+1} u_{i-1}\}_{i=1}^m$ be the discrete divergence operator.
- Let grad : $\lambda \mapsto \{\lambda_{i+1} \lambda_{i-1}\}_{i=0}^n$ be the discrete gradient operator.

Let $\langle \mathbf{f}, \mathbf{g} \rangle := \langle \mathbf{f}, \mathbf{g} \rangle_0^n$ for $\mathbf{f}, \mathbf{g} \in V$ and let $\langle \lambda, \operatorname{div} \mathbf{f} \rangle :=$ $\langle \lambda, \operatorname{div} \mathbf{f} \rangle_1^m$ denote default inner products.

Impose the boundary conditions

$$0 = \lambda_{m+2} = \lambda_{m+1} \text{ and } 0 = \lambda_{-1} = \lambda_0, \tag{5}$$

For Section 1 to go through, we must verify the following two properties.

• We need that λ satisfies the adjoint property $\langle \operatorname{grad} \lambda, \mathbf{w} \rangle = 0$, as in (7). Indeed:

 $\langle \operatorname{grad} \lambda, \mathbf{w} \rangle := \langle \operatorname{grad} \lambda, \mathbf{w} \rangle_0^n$ $= \langle E^+ \lambda, \mathbf{w} \rangle_0^n - \langle E^- \lambda, \mathbf{w} \rangle_0^n \\ = \langle \lambda, E^- \mathbf{w} \rangle_1^{n+1} - \langle \lambda, E^+ \mathbf{w} \rangle_{-1}^{n-1}$ $= \lambda_{n+1} w_n + \lambda_n w_{n-1} - \lambda_0 w_1 - \lambda_{-1} w_0 - \langle \lambda, \operatorname{div} \mathbf{w} \rangle_1^m$ = 0, using (5) and div $\mathbf{w} = 0$.

This decouples the system into a pair of tridiagonal systems for even and odd indices.

• We need that

$$\operatorname{div}\operatorname{grad}\lambda = \mathbf{s} - \operatorname{div}\mathbf{v}.\tag{6}$$

as in (9).

Writing out the system explicitly and using the Dirichlet boundary conditions gives a decoupled pair of tridiagonal systems for even and odd indices.

В Even/odd discretized 1-D problem

Let dx be the mesh size.

Let div : $\mathbf{u} \mapsto \left\{\frac{u_{i+1}-u_{i-1}}{2 dx}\right\}_{i=1}^{m}$ be the discrete divergence operator.

Let $\mathbf{s} = \{s_i\}_{i=1}^m$ be a desired discrete divergence. Let grad : $\lambda \mapsto \{\frac{\lambda_{i+1} - \lambda_{i-1}}{2 dx}\}_{i=0}^n$ be the discrete gradient operator.

B.1 Problem

Find $\mathbf{u} = \{u_i\}_{i=0}^n$ that minimizes $\|\mathbf{u} - \mathbf{v}\| = \sum_{i=0}^n (u_i - v_i)^2$. subject to the constraint that $(\operatorname{div} \mathbf{u})_i = s_i$ for $i = 1, \dots, m$.

Solution: Let $\tilde{\mathbf{s}} = 2 \, dx \, \mathbf{s}$ and map onto the previous problem.

С Derivation of solution using La- C.3 Statement of continuum problem grange multipliers

C.1 Statement of abstract problem

We recall the abstract problem: Given vectors \mathbf{v} and \mathbf{s} , minimize $\|\mathbf{u} - \mathbf{v}\|^2$ subject to the constraint that div $\mathbf{u} = \mathbf{s}$.

C.2 **Derivation of solution**

Use Lagrange multipliers.

Let $L(\mathbf{u}, \lambda) = \|\mathbf{u} - \mathbf{v}\|^2 + 2\langle \lambda, \operatorname{div} \mathbf{u} - \mathbf{s} \rangle$. We seek a stationary point.

Set $0 = d_{\epsilon}|_{\epsilon=0}L(\mathbf{u}, \lambda + \epsilon \lambda') = 2\langle \lambda', \operatorname{div} \mathbf{u} - \mathbf{s} \rangle$. Since this must be true for arbitrary λ' , we recover the constraint equation div $\mathbf{u} = \mathbf{s}$.

Set
$$0 = d_{\epsilon}|_{\epsilon=0}L(\mathbf{u} + \epsilon \mathbf{u}', \lambda)$$

 $= d_{\epsilon}|_{\epsilon=0} \Big(\|\mathbf{u} + \epsilon \mathbf{u}' - \mathbf{v}\|^2 + 2\langle \lambda, \operatorname{div}(\mathbf{u} + \epsilon \mathbf{u}') - \mathbf{s} \rangle \Big)$
 $= d_{\epsilon}|_{\epsilon=0} \Big(\|\mathbf{u} - \mathbf{v}\|^2 + \epsilon 2\langle \mathbf{u}', \mathbf{u} - \mathbf{v} \rangle + \epsilon^2 \|\mathbf{u}'\|^2 \Big) + 2\langle \lambda, \operatorname{div}\mathbf{u}' \rangle$
 $= 2\langle \mathbf{u}', \mathbf{u} - \mathbf{v} \rangle + 2\langle \lambda, \operatorname{div}\mathbf{u}' \rangle.$

At this point in the derivation one restricts \mathbf{u}' by requiring \mathbf{u}' to satisfy some appropriate kind of zero-value boundary condition so that.

$$\langle \lambda, \operatorname{div} \mathbf{u}' \rangle = -\langle \operatorname{grad} \lambda, \mathbf{u}' \rangle. \tag{7}$$

So $0 = \langle \mathbf{u}', \mathbf{u} - \mathbf{v} - \operatorname{grad} \lambda \rangle$. Assume that there is still enough freedom in the choice of \mathbf{u}' to conclude that

$$\mathbf{u} = \mathbf{v} + \operatorname{grad} \lambda. \tag{8}$$

Substituting this into the constraint equation $\operatorname{div} \mathbf{u} = \mathbf{s}$ gives

$$\operatorname{div}\operatorname{grad}\lambda = \mathbf{s} - \operatorname{div}\mathbf{v} \tag{9}$$

This is a necessary condition to have a minimum. To pick out a single solution, we need to impose boundary conditions on this abstract Poisson equation. We derive these boundary conditions by attempting to show that **u** satisfying (8) and (9) is the minimum and seeing what additional assumptions we need.

Let **f** be another vector that satisfies the discrete divergence condition div $\mathbf{f} = \mathbf{s}$, and write $\mathbf{f} = \mathbf{u} + \mathbf{w}$. So div $\mathbf{w} = 0$. $\mathbf{f} = \mathbf{v} + (\operatorname{grad} \lambda) + \mathbf{w}$. Then $\|\mathbf{f} - \mathbf{v}\|^2 = \|\operatorname{grad} \lambda + \mathbf{w}\|^2 = \|\mathbf{f}\|^2$ $\langle \operatorname{grad} \lambda + \mathbf{w}, \operatorname{grad} \lambda + \mathbf{w} \rangle = \|\operatorname{grad} \lambda\|^2 + 2\langle \operatorname{grad} \lambda, \mathbf{w} \rangle + \|\mathbf{w}\|^2.$ Since we could replace \mathbf{w} with its opposite, this is minimized at $\mathbf{w} = 0$ if and only if

$$\langle \operatorname{grad} \lambda, \mathbf{w} \rangle = 0.$$
 (10)

So the key to minimizing distance is orthogonal projection. Indeed, observe that

$$\langle \mathbf{u} - \mathbf{v}, \mathbf{w} \rangle = \langle \operatorname{grad} \lambda, \mathbf{w} \rangle = 0$$
 (11)

We recall the continuum problem:

Let **v** be a vector field on the domain Ω .

Let σ be a desired divergence.

Find **u** that minimizes $\|\mathbf{u} - \mathbf{v}\|^2$ subject to the constraint that $\nabla \cdot \mathbf{u} = \sigma$ in Ω .

C.4 Solution

Use Lagrange multipliers.

Let $L(\mathbf{u}, \lambda) = \int_{\Omega} (\mathbf{u} - \mathbf{v})^2 + \int_{\Omega} 2\lambda (\nabla \cdot \mathbf{u} - \sigma)$, where λ is a Lagrange multiplier function, and where dom(λ) = Ω . We minimize L.

Perturbing the multipliers simply recovers the constraints. Let \mathbf{u}' be a test perturbation.

 $d_{\epsilon}|_{\epsilon=0}L(\mathbf{u}+\epsilon\mathbf{u}') = \int_{\Omega} 2(\mathbf{u}-\mathbf{v})\cdot\mathbf{u}' + \int_{\Omega} 2\lambda\nabla\cdot\mathbf{u}'.$ The left hand side should be zero. If we impose $\mathbf{u}' = 0$ on $\partial \Omega$, we get: $0 = \int_{\Omega} 2(\mathbf{u} - \mathbf{v}) \cdot \mathbf{u}' - \int_{\Omega} 2\nabla \lambda \cdot \mathbf{u}'$.

Since \mathbf{u}' is arbitrary, we get $0 = 2(\mathbf{u} - \mathbf{v}) - 2\nabla\lambda$, i.e.,

$$\mathbf{u} = \mathbf{v} + \nabla \lambda \text{ in } \Omega. \tag{12}$$

Substituting this into the constraint equations gives the equation:

$$\nabla^2 \lambda = \sigma - \nabla \cdot \mathbf{v} \text{ in } \Omega. \tag{13}$$

This is a necessary condition to have a minimum. To pick out a single solution, we need to impose boundary conditions on this Poisson equation. We derive these boundary conditions by attempting to show that **u** satisfying equations (12) and (13) is the minimum and seeing what additional assumptions are necessary.

Let **f** be another function that satisfies $\nabla \cdot \mathbf{f} = \sigma$, and write $\mathbf{f} = \mathbf{u} + \mathbf{w} = \mathbf{v} + \nabla \lambda + \mathbf{w}$. So $\nabla \cdot \mathbf{w} = 0$. Then $\|\mathbf{f} - \mathbf{v}\|^2 = \mathbf{v}$ $\|\nabla\lambda + \mathbf{w}\|^2 = \langle \nabla\lambda + \mathbf{w}, \nabla\lambda + \mathbf{w} \rangle = \|\nabla\lambda\|^2 + 2\langle \nabla\lambda, \mathbf{w} \rangle + 2\langle \nabla\lambda, \mathbf$ $\|\mathbf{w}\|^2$. Since we could replace \mathbf{w} with its opposite, this is minimized at $\mathbf{w} = 0$ if and only if $\langle \nabla \lambda, \mathbf{w} \rangle = 0$. So the key to minimizing distance is *orthogonal* projection.

But
$$\langle \nabla \lambda, \mathbf{w} \rangle = \int_{\Omega} \nabla \lambda \cdot \mathbf{w} = \int_{\Omega} \nabla \cdot (\lambda \mathbf{w}) - \int_{\Omega} \lambda \underbrace{\nabla \cdot \mathbf{w}}_{0} = \oint_{\partial \Omega} \mathbf{n} \cdot \mathbf{w}$$

 $(\lambda \mathbf{w})$, which equals 0 if we impose homogeneous Dirichlet boundary conditions, i.e., $\lambda = 0$ on $\partial \Omega$.