Projection onto a given divergence

by Alec Johnson, June 13, 2007

1 Abstract Problem

1.1 Definitions

Let H denote a Hilbert space with inner product denoted by \langle,$\rangle and norm \|\cdot\|$ defined by $\|\mathbf{w}\|=\langle\mathbf{w}, \mathbf{w}\rangle^{1 / 2} \quad \forall \mathbf{w}$.

1.2 Problem

Given vectors \mathbf{v} and \mathbf{s}, minimize $\|\mathbf{u}-\mathbf{v}\|^{2}$ subject to the constraint that $\operatorname{div} \mathbf{u}=\mathbf{s}$.

1.3 Solution framework

Suppose that \mathbf{u} is the minimizer. Let $\mathbf{f}=\mathbf{u}+\mathbf{w}$ also satisfy $\operatorname{div} \mathbf{f}=\mathbf{s}$, i.e., $\operatorname{div} \mathbf{w}=0$. Now $\|\mathbf{f}-\mathbf{v}\|^{2}=\|(\mathbf{u}-\mathbf{v})+\mathbf{w}\|^{2}=$ $\|\mathbf{u}-\mathbf{v}\|^{2}+2\langle\mathbf{u}-\mathbf{v}, \mathbf{w}\rangle+\|\mathbf{w}\|^{2}$. Since we could replace \mathbf{w} with its opposite, this is minimized at $\mathbf{w}=0$ only if $\langle\mathbf{u}-\mathbf{v}, \mathbf{w}\rangle=0$. (That is, \mathbf{u} is the orthogonal projection of \mathbf{v} onto the linear manifold of all \mathbf{f} satisfying $\operatorname{div} \mathbf{f}=\mathbf{s}$.)

In general we will claim that the minimizer \mathbf{u} is specified by

$$
\begin{equation*}
(\mathbf{u}-\mathbf{v})=\operatorname{grad} \lambda \tag{1}
\end{equation*}
$$

where λ is restricted to belong to a class of functions satisfying the adjoint property

$$
\begin{equation*}
\langle\operatorname{grad} \lambda, \mathbf{w}\rangle=-\langle\lambda, \operatorname{div} \mathbf{w}\rangle \tag{2}
\end{equation*}
$$

In each particular case, we show that λ will satisfy this adjoint property if we require λ to satisfy an appropriate Dirichlet boundary condition of the form $\lambda=0$ on $\partial \Omega$.

Since $\operatorname{div} \mathbf{w}=0$, it is enough for there to exist a λ satisfying (8) and satisfying (7). Substituting (8) into the constraint $\operatorname{div} \mathbf{u}=0$ gives the abstract Poisson equation

$$
\begin{equation*}
\operatorname{div} \operatorname{grad} \lambda=\mathbf{s}-\operatorname{div} \mathbf{v} \tag{3}
\end{equation*}
$$

So the problem reduces to showing that there is a unique λ that solves the Poisson equation (9) from a class of vectors λ which satisfy the adjoint property (7).

2 Continuum problem

2.1 Definitions of continuum problem

Let Ω be a nice domain.
For \mathbf{u}, \mathbf{w} vector fields on Ω, let $\langle\mathbf{u}, \mathbf{w}\rangle:=\int_{\Omega} \mathbf{u} \cdot \mathbf{w}$.

2.2 Statement of continuum problem

Let \mathbf{v} be a vector field on the domain Ω.
Let σ be a desired divergence.
Find \mathbf{u} that minimizes $\|\mathbf{u}-\mathbf{v}\|^{2}$ subject to the constraint that $\nabla \cdot \mathbf{u}=\sigma$ in Ω.

2.3 Solution

For this continuum problem there exists a unique solution to the Poisson equation (9) with Dirichlet boundary conditions $\lambda=0$ on $\partial \Omega$, and such λ indeed satisfies the adjoint property (7):
$\langle\operatorname{grad} \lambda, \mathbf{w}\rangle=\int_{\Omega}(\nabla \lambda) \cdot \mathbf{w}=\int_{\Omega} \nabla \cdot(\lambda \mathbf{w})-\int_{\Omega} \lambda \nabla \cdot \mathbf{w}$ $=-\langle\lambda, \nabla \cdot \mathbf{w}\rangle$, as needed.

3 Definitions for discrete calculus

Let $\langle\mathbf{f}, \mathbf{g}\rangle_{a}^{b}=\sum_{i=a}^{b} f_{i} g_{i}$ denote a generalized inner product. Let $E^{k}=\mathbf{f} \mapsto\left\{f_{i+k}\right\}_{i \in \mathbb{Z}}$ be the shift operator. Let $E^{+}:=$ E^{+1} and $E^{-}:=E^{-1}$.
Let $D^{+}:=E^{+}-E^{0}$
Let $D^{-}:=E^{0}-E^{-}$
Observe that $\langle\mathbf{f}, \mathbf{g}\rangle_{a}^{b}=\left\langle E^{k} \mathbf{f}, E^{k} \mathbf{g}\right\rangle_{a-k}^{b-k}$.

4 Staggered discrete 1D problem

4.1 Problem

Given the scalar sequences $\mathbf{v}=\left\{v_{i}\right\}_{i=1}^{m}$ and $\mathbf{s}=\left\{s_{i}\right\}_{i=1}^{m-1}$, find $\mathbf{u}=\left\{u_{i}\right\}_{i=1}^{m}$ that minimizes $\|\mathbf{u}-\mathbf{v}\|=\sum_{i=1}^{m}\left(u_{i}-\right.$ $\left.v_{i}\right)^{2}$, subject to the constraint that $\left(D^{+} \mathbf{u}\right)_{i}=s_{i}$ for $i=$ $1, \ldots,(m-1)$.

4.2 Solution

Adopt the following definitions
Let div $=D^{+}$.
Let grad $=D^{-}$.
Require that λ satisfy the Dirichlet boundary conditions

$$
\begin{equation*}
\lambda_{0}=0=\lambda_{m} \tag{4}
\end{equation*}
$$

We need to show that for such λ the following properties hold.

1. λ satisfies the adjoint property. Indeed,

$$
\begin{aligned}
& \langle\operatorname{grad} \lambda, \mathbf{w}\rangle:=\left\langle D^{-} \lambda, \mathbf{w}\right\rangle_{1}^{m} \\
& =\langle\lambda, \mathbf{w}\rangle_{1}^{m}-\left\langle E^{-} \lambda, \mathbf{w}\right\rangle_{1}^{m} \\
& =\langle\lambda, \mathbf{w}\rangle_{1}^{m}-\left\langle\lambda, E^{+} \mathbf{w}\right\rangle_{0}^{m-1} \\
& =-\left\langle\lambda, D^{+} \mathbf{w}\right\rangle_{1}^{m-1}+\lambda_{m} w_{m}-\lambda_{0} w_{1} \\
& =0, \text { using (4) and div } \mathbf{w}=0
\end{aligned}
$$

2. There is a unique λ that satisfies the Poisson equation (9).

To show this, we write out the Poisson equation (9) explictly as a linear system:

$$
-\lambda_{i+1}+2 \lambda_{i}-\lambda_{i-1}=g_{i} \text { for } 1 \leq i \leq(m-1)
$$

where $\mathbf{g}:=\operatorname{div} \mathbf{v}-\mathbf{s}$.
Using the Dirichlet boundary conditions $\lambda_{0}=0=\lambda_{m}$ and writing the system in matrix form, we see that we
have a tridiagonal system:

$$
\left[\begin{array}{ccccc}
2 & -1 & & & \\
-1 & 2 & \ddots & & \\
& \ddots & \ddots & \ddots & \\
& & \ddots & 2 & -1 \\
& & & -1 & 2
\end{array}\right]\left[\begin{array}{c}
\lambda_{1} \\
\lambda_{2} \\
\vdots \\
\lambda_{m-2} \\
\lambda_{m-1}
\end{array}\right]=\left[\begin{array}{c}
g_{1} \\
g_{2} \\
\vdots \\
g_{m-2} \\
g_{m-1}
\end{array}\right]
$$

5 Staggered discretized 1D problems

5.1 Staggered divergence problem

Find \mathbf{u} that minimizes $\|\mathbf{u}-\mathbf{v}\|:=\sum_{i=1}^{m}\left(u_{i}-v_{i}\right)^{2}$ subject to $\frac{u_{i+1}-u_{i}}{d x}=s_{i+1 / 2}$ for $i=1, \ldots,(m-1)$.

Solution: Let $\tilde{s}_{i}=(d x) s_{i+1 / 2}$, and map onto the previous problem. (It's also helpful to consider a mapping $\tilde{\lambda}_{i}=$ $\lambda_{i+1 / 2}$.)

5.2 Staggered vector problem

Find \mathbf{u} that minimizes $\|\mathbf{u}-\mathbf{v}\|:=\sum_{i=1}^{n}\left(u_{i-1 / 2}-v_{i-1 / 2}\right)^{2}$ subject to $\frac{u_{i+1 / 2}-u_{i-1 / 2}}{d x}=s_{i}$ for $1 \leq i \leq(n-1)$.

Solution: Let $\tilde{u}_{i}=u_{i-1 / 2}$, let $\tilde{\mathbf{s}}=(d x) \mathbf{s}$, let $m=n-1$, and map onto the previous problem.

A Even/odd discrete 1D problem

A. 1 Problem

Find $\mathbf{u}=\left\{u_{i}\right\}_{i=0}^{m+1}$ that minimizes $\|\mathbf{u}-\mathbf{v}\|=\sum_{i=0}^{m+1}\left(u_{i}-\right.$ $\left.v_{i}\right)^{2}$, subject to the constraint that $(D \mathbf{u})_{i}=s_{i}$ for $i=$ $1, \ldots, m$, where $D:=E^{+}-E^{-}$.

A. 2 Solution

Let $n=m+1$.
Let div : $\mathbf{u} \mapsto\left\{u_{i+1}-u_{i-1}\right\}_{i=1}^{m}$ be the discrete divergence operator.
Let grad : $\lambda \mapsto\left\{\lambda_{i+1}-\lambda_{i-1}\right\}_{i=0}^{n}$ be the discrete gradient operator.
Let $\langle\mathbf{f}, \mathbf{g}\rangle:=\langle\mathbf{f}, \mathbf{g}\rangle_{0}^{n}$ for $\mathbf{f}, \mathbf{g} \in V$ and let $\langle\lambda, \operatorname{div} \mathbf{f}\rangle:=$ $\langle\lambda, \operatorname{div} \mathbf{f}\rangle_{1}^{m}$ denote default inner products.

Impose the boundary conditions

$$
\begin{equation*}
0=\lambda_{m+2}=\lambda_{m+1} \text { and } 0=\lambda_{-1}=\lambda_{0} \tag{5}
\end{equation*}
$$

For Section 1 to go through, we must verify the following two properties.

- We need that λ satisfies the adjoint property $\langle\operatorname{grad} \lambda, \mathbf{w}\rangle=0$, as in (7). Indeed:
$\langle\operatorname{grad} \lambda, \mathbf{w}\rangle:=\langle\operatorname{grad} \lambda, \mathbf{w}\rangle_{0}^{n}$
$=\left\langle E^{+} \lambda, \mathbf{w}\right\rangle_{0}^{n}-\left\langle E^{-} \lambda, \mathbf{w}\right\rangle_{0}^{n}$
$=\left\langle\lambda, E^{-} \mathbf{w}\right\rangle_{1}^{n+1}-\left\langle\lambda, E^{+} \mathbf{w}\right\rangle_{-1}^{n-1}$
$=\lambda_{n+1} w_{n}+\lambda_{n} w_{n-1}-\lambda_{0} w_{1}-\lambda_{-1} w_{0}-\langle\lambda, \operatorname{div} \mathbf{w}\rangle_{1}^{m}$
$=0$, using (5) and $\operatorname{div} \mathbf{w}=0$.
This decouples the system into a pair of tridiagonal systems for even and odd indices.
- We need that

$$
\begin{equation*}
\operatorname{div} \operatorname{grad} \lambda=\mathbf{s}-\operatorname{div} \mathbf{v} \tag{6}
\end{equation*}
$$

as in (9).
Writing out the system explicitly and using the Dirichlet boundary conditions gives a decoupled pair of tridiagonal systems for even and odd indices.

B Even/odd discretized 1-D problem

Let $d x$ be the mesh size.
Let div : $\mathbf{u} \mapsto\left\{\frac{u_{i+1}-u_{i-1}}{2 d x}\right\}_{i=1}^{m}$ be the discrete divergence operator.
Let $\mathbf{s}=\left\{s_{i}\right\}_{i=1}^{m}$ be a desired discrete divergence.
Let grad : $\lambda \mapsto\left\{\frac{\lambda_{i+1}-\lambda_{i-1}}{2 d x}\right\}_{i=0}^{n}$ be the discrete gradient operator.

B. 1 Problem

Find $\mathbf{u}=\left\{u_{i}\right\}_{i=0}^{n}$ that minimizes $\|\mathbf{u}-\mathbf{v}\|=\sum_{i=0}^{n}\left(u_{i}-v_{i}\right)^{2}$. subject to the constraint that $(\operatorname{div} \mathbf{u})_{i}=s_{i}$ for $i=1, \ldots, m$.

Solution: Let $\tilde{\mathbf{s}}=2 d x \mathbf{s}$ and map onto the previous problem.

C Derivation of solution using Lagrange multipliers

C. 1 Statement of abstract problem

We recall the abstract problem: Given vectors \mathbf{v} and \mathbf{s}, minimize $\|\mathbf{u}-\mathbf{v}\|^{2}$ subject to the constraint that $\operatorname{div} \mathbf{u}=\mathbf{s}$.

C. 2 Derivation of solution

Use Lagrange multipliers.
Let $L(\mathbf{u}, \lambda)=\|\mathbf{u}-\mathbf{v}\|^{2}+2\langle\lambda, \operatorname{div} \mathbf{u}-\mathbf{s}\rangle$. We seek a stationary point.

Set $0=\left.d_{\epsilon}\right|_{\epsilon=0} L\left(\mathbf{u}, \lambda+\epsilon \lambda^{\prime}\right)=2\left\langle\lambda^{\prime}, \operatorname{div} \mathbf{u}-\mathbf{s}\right\rangle$. Since this must be true for arbitrary λ^{\prime}, we recover the constraint equation $\operatorname{div} \mathbf{u}=\mathbf{s}$.

Set $0=\left.d_{\epsilon}\right|_{\epsilon=0} L\left(\mathbf{u}+\epsilon \mathbf{u}^{\prime}, \lambda\right)$
$=\left.d_{\epsilon}\right|_{\epsilon=0}\left(\left\|\mathbf{u}+\epsilon \mathbf{u}^{\prime}-\mathbf{v}\right\|^{2}+2\left\langle\lambda, \operatorname{div}\left(\mathbf{u}+\epsilon \mathbf{u}^{\prime}\right)-\mathbf{s}\right\rangle\right)$
$=\left.d_{\epsilon}\right|_{\epsilon=0}\left(\|\mathbf{u}-\mathbf{v}\|^{2}+\epsilon 2\left\langle\mathbf{u}^{\prime}, \mathbf{u}-\mathbf{v}\right\rangle+\epsilon^{2}\left\|\mathbf{u}^{\prime}\right\|^{2}\right)+2\left\langle\lambda, \operatorname{div} \mathbf{u}^{\prime}\right\rangle$
$=2\left\langle\mathbf{u}^{\prime}, \mathbf{u}-\mathbf{v}\right\rangle+2\left\langle\lambda, \operatorname{div} \mathbf{u}^{\prime}\right\rangle$.
At this point in the derivation one restricts \mathbf{u}^{\prime} by requiring \mathbf{u}^{\prime} to satisfy some appropriate kind of zero-value boundary condition so that.

$$
\begin{equation*}
\left\langle\lambda, \operatorname{div} \mathbf{u}^{\prime}\right\rangle=-\left\langle\operatorname{grad} \lambda, \mathbf{u}^{\prime}\right\rangle \tag{7}
\end{equation*}
$$

So $0=\left\langle\mathbf{u}^{\prime}, \mathbf{u}-\mathbf{v}-\operatorname{grad} \lambda\right\rangle$. Assume that there is still enough freedom in the choice of \mathbf{u}^{\prime} to conclude that

$$
\begin{equation*}
\mathbf{u}=\mathbf{v}+\operatorname{grad} \lambda \tag{8}
\end{equation*}
$$

Substituting this into the constraint equation $\operatorname{div} \mathbf{u}=\mathbf{s}$ gives

$$
\begin{equation*}
\operatorname{div} \operatorname{grad} \lambda=\mathbf{s}-\operatorname{div} \mathbf{v} \tag{9}
\end{equation*}
$$

This is a necessary condition to have a minimum. To pick out a single solution, we need to impose boundary conditions on this abstract Poisson equation. We derive these boundary conditions by attempting to show that u satisfying (8) and (9) is the minimum and seeing what additional assumptions we need.

Let \mathbf{f} be another vector that satisfies the discrete divergence condition $\operatorname{div} \mathbf{f}=\mathbf{s}$, and write $\mathbf{f}=\mathbf{u}+\mathbf{w}$. So $\operatorname{div} \mathbf{w}=0$. $\mathbf{f}=\mathbf{v}+(\operatorname{grad} \lambda)+\mathbf{w}$. Then $\|\mathbf{f}-\mathbf{v}\|^{2}=\|\operatorname{grad} \lambda+\mathbf{w}\|^{2}=$ $\langle\operatorname{grad} \lambda+\mathbf{w}, \operatorname{grad} \lambda+\mathbf{w}\rangle=\|\operatorname{grad} \lambda\|^{2}+2\langle\operatorname{grad} \lambda, \mathbf{w}\rangle+\|\mathbf{w}\|^{2}$. Since we could replace \mathbf{w} with its opposite, this is minimized at $\mathbf{w}=0$ if and only if

$$
\begin{equation*}
\langle\operatorname{grad} \lambda, \mathbf{w}\rangle=0 \tag{10}
\end{equation*}
$$

So the key to minimizing distance is orthogonal projection. Indeed, observe that

$$
\begin{equation*}
\langle\mathbf{u}-\mathbf{v}, \mathbf{w}\rangle=\langle\operatorname{grad} \lambda, \mathbf{w}\rangle=0 \tag{11}
\end{equation*}
$$

C. 3 Statement of continuum problem

We recall the continuum problem:
Let \mathbf{v} be a vector field on the domain Ω.
Let σ be a desired divergence.
Find \mathbf{u} that minimizes $\|\mathbf{u}-\mathbf{v}\|^{2}$ subject to the constraint that $\nabla \cdot \mathbf{u}=\sigma$ in Ω.

C. 4 Solution

Use Lagrange multipliers.
Let $L(\mathbf{u}, \lambda)=\int_{\Omega}(\mathbf{u}-\mathbf{v})^{2}+\int_{\Omega} 2 \lambda(\nabla \cdot \mathbf{u}-\sigma)$, where λ is a Lagrange multiplier function, and where $\operatorname{dom}(\lambda)=\Omega$.
We minimize L.
Perturbing the multipliers simply recovers the constraints. Let \mathbf{u}^{\prime} be a test perturbation.
$\left.d_{\epsilon}\right|_{\epsilon=0} L\left(\mathbf{u}+\epsilon \mathbf{u}^{\prime}\right)=\int_{\Omega} 2(\mathbf{u}-\mathbf{v}) \cdot \mathbf{u}^{\prime}+\int_{\Omega} 2 \lambda \nabla \cdot \mathbf{u}^{\prime}$.
The left hand side should be zero. If we impose $\mathbf{u}^{\prime}=0$ on $\partial \Omega$, we get: $0=\int_{\Omega} 2(\mathbf{u}-\mathbf{v}) \cdot \mathbf{u}^{\prime}-\int_{\Omega} 2 \nabla \lambda \cdot \mathbf{u}^{\prime}$.

Since \mathbf{u}^{\prime} is arbitrary, we get $0=2(\mathbf{u}-\mathbf{v})-2 \nabla \lambda$, i.e.,

$$
\begin{equation*}
\mathbf{u}=\mathbf{v}+\nabla \lambda \text { in } \Omega \tag{12}
\end{equation*}
$$

Substituting this into the constraint equations gives the equation:

$$
\begin{equation*}
\nabla^{2} \lambda=\sigma-\nabla \cdot \mathbf{v} \text { in } \Omega \tag{13}
\end{equation*}
$$

This is a necessary condition to have a minimum. To pick out a single solution, we need to impose boundary conditions on this Poisson equation. We derive these boundary conditions by attempting to show that \mathbf{u} satisfying equations (12) and (13) is the minimum and seeing what additional assumptions are necessary.

Let \mathbf{f} be another function that satisfies $\nabla \cdot \mathbf{f}=\sigma$, and write $\mathbf{f}=\mathbf{u}+\mathbf{w}=\mathbf{v}+\nabla \lambda+\mathbf{w}$. So $\nabla \cdot \mathbf{w}=0$. Then $\|\mathbf{f}-\mathbf{v}\|^{2}=$ $\|\nabla \lambda+\mathbf{w}\|^{2}=\langle\nabla \lambda+\mathbf{w}, \nabla \lambda+\mathbf{w}\rangle=\|\nabla \lambda\|^{2}+2\langle\nabla \lambda, \mathbf{w}\rangle+$ $\|\mathbf{w}\|^{2}$. Since we could replace \mathbf{w} with its opposite, this is minimized at $\mathbf{w}=0$ if and only if $\langle\nabla \lambda, \mathbf{w}\rangle=0$. So the key to minimizing distance is orthogonal projection.
But $\langle\nabla \lambda, \mathbf{w}\rangle=\int_{\Omega} \nabla \lambda \cdot \mathbf{w}=\int_{\Omega} \nabla \cdot(\lambda \mathbf{w})-\int_{\Omega} \lambda \underbrace{\nabla \cdot \mathbf{w}}_{0}=\oint_{\partial \Omega} \mathbf{n}$. $(\lambda \mathbf{w})$, which equals 0 if we impose homogeneous Dirichlet boundary conditions, i.e., $\lambda=0$ on $\partial \Omega$.

