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1 Abstract Problem

1.1 Definitions

Let H denote a Hilbert space with inner product denoted
by (,) and norm | - || defined by ||w|| = (w,w)/? VYw.

1.2 Problem

Given vectors v and s, minimize |[u — v||? subject to the
constraint that divu =s.

1.3 Solution framework

Suppose that u is the minimizer. Let f = u+w also satisfy
divf = s, ie., divw = 0. Now |[f—v|? = |[(u—v)+w]|? =
lu — v||? + 2(u — v,w) + ||w]||?. Since we could replace
w with its opposite, this is minimized at w = 0 only if
(u—v,w) =0. (That is, u is the orthogonal projection
of v onto the linear manifold of all f satisfying divf =s.)

In general we will claim that the minimizer u is specified
by

(1)

where A is restricted to belong to a class of functions satis-
fying the adjoint property

(u—v)=grad\,

(grad A\, w) = —(\, divw). (2)
In each particular case, we show that A\ will satisfy this
adjoint property if we require A to satisfy an appropriate

Dirichlet boundary condition of the form A = 0 on 9.

Since divw = 0, it is enough for there to exist a A satisfying
(8) and satisfying (7). Substituting (8) into the constraint
divu = 0 gives the abstract Poisson equation

(3)

So the problem reduces to showing that there is a unique A
that solves the Poisson equation (9) from a class of vectors
A which satisfy the adjoint property (7).

divgrad A = s — divv.

2 Continuum problem

2.1 Definitions of continuum problem

Let € be a nice domain.
For u, w vector fields on §, let (u,w) := fQ u-w.

2.2 Statement of continuum problem

Let v be a vector field on the domain €.

Let o be a desired divergence.

Find u that minimizes |[u — v||? subject to the constraint
that V-u =0 in Q.

2.3 Solution

For this continuum problem there exists a unique solution
to the Poisson equation (9) with Dirichlet boundary condi-
tions A = 0 on 0f2, and such A indeed satisfies the adjoint

property (7):

(grad \,w) = [,(VA)-w= [,V
= —(\, V- w), as needed.

—fQ)\V~W

3 Definitions for discrete calculus

Let (f,g)° = Z?:a fig; denote a generalized inner product.

Let E¥ = f + {fi11}icz be the shift operator. Let Bt :=
Etland E- := E~!

Let Dt := ET — E°

Let D~ := E° — E~

Observe that (f,g)? = <Ekf=Ekg>Zi]Z

4 Staggered discrete 1D problem

4.1 Problem

Given the scalar sequences v = {v;}7*, and s = {s;}7 ",

find u = {u;}/; that minimizes ||lu — v|| = Y/" (u; —
v;)?, subject to the constraint that (DTu); = s; for i =
1,...,(m—=1).

4.2 Solution

Adopt the following definitions

Let div = D™,

Let grad = D™

Require that A satisfy the Dirichlet boundary conditions

(4)

We need to show that for such A the following properties
hold.

1. X satisfies the adjoint property. Indeed,

(grad \, w) := (D~ A\, W)
= W) — (B, wp
= oW = (L Erw)i
</\ Drw) N we, — Aown
= 0 using (4) and divw = 0.

2. There is a unique A that satisfies the Poisson equation
(9).
To show this, we write out the Poisson equation (9)
explictly as a linear system:

—Aix1+2N — A1 =g for 1 <i< (m — 1),

where g :=divv —s.

Using the Dirichlet boundary conditions A\g = 0 = A,
and writing the system in matrix form, we see that we



have a tridiagonal system:
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5 Staggered discretized 1D prob-
lems

5.1 Staggered divergence problem

Find u that minimizes |u — v|| := >/" (u; — v;)? subject
to = =5,y 0 fori=1,...,(m—1).

Solution: Let 3; = (dz) sj;1/2, and map onto the previous
problem. (It’s also helpful to consider a mapping N =

Ait1/2-)

5.2 Staggered vector problem

Find u that minimizes |[u — v|| := Y7 | (u;—1/2 — v;—1/2)*

subject to w =s;for1 <i<(n-1).

Solution: Let @; = u;_1/9, let 8 = (dx)s, let m =n — 1,
and map onto the previous problem.

A Even/odd discrete 1D problem
A.1 Problem
m—+1

Find u = {u;}75" that minimizes |u — v| = S/ (u; —
v;)?, subject to the constraint that (Du); = s; for i =
1,...,m, where D := Bt — E—.

A.2 Solution

Let n=m+ 1.

Let div : w > {u;41 — u;—1}7, be the discrete divergence
operator.

Let grad : A — {Aiy1 — Ai—1}], be the discrete gradient
operator.

Let (f,g) = (f,g)y for f,g € V and let (\,divf) :=
(X, div )7 denote default inner products.

Impose the boundary conditions

0= /\m+2 = /\m+1 and 0 = )\_1 = )\0, (5)
For Section 1 to go through, we must verify the following
two properties.

e We mneed that A satisfies the adjoint property
(grad A\, w) = 0, as in (7). Indeed:
(grad A\, w) := (grad A\, w)l
= <E+)‘7W>g - <E_/\7W>6l
= <)\,E’W>?+1 — (A,E*W}’l}l
= )\n+1’wn + ApWp_1 — Aow1 — A_qwpy — <)\, leW>in
=0, using (5) and divw = 0.

This decouples the system into a pair of tridiagonal
systems for even and odd indices.

e We need that

divgrad A = s — divv. (6)

as in (9).
Writing out the system explicitly and using the Dirich-

let boundary conditions gives a decoupled pair of tridi-
agonal systems for even and odd indices.

B Even/odd discretized 1-D prob-
lem

Let dx be the mesh size.

Let div : u — {=—_2=23m)
operator.

Let s = {s;}, be a desired discrete divergence.

Let grad : A\ — {%}?:0 be the discrete gradient
operator.

be the discrete divergence

B.1 Problem

Find u = {u;}!, that minimizes [[u—v| = Y1 (u; —v;)*
subject to the constraint that (divu); = s; fori=1,...,m.

Solution: Let s = 2dxs and map onto the previous prob-
lem.



C Derivation of solution using La-
grange multipliers

C.1 Statement of abstract problem

We recall the abstract problem: Given vectors v and s,
minimize ||u— v||? subject to the constraint that divu = s.

C.2 Derivation of solution

Use Lagrange multipliers.

Let L(u, \) = [[lu—v|?+2(\, divu—s). We seek a stationary
point.

Set 0 = de|c=oL(u, A + €X) = 2(),divu — s). Since this
must be true for arbitrary ), we recover the constraint
equation divu = s.

Set 0 = de|c—oL(u+ eu’, )

- d€|E:0(||u +eu — |2 + 20\, div (u + eu’) — s>)

_ d€|E:0(||u v+ e2(u,u—v) + 62||u'||2) + 20\, divu)
=2(u’,;u—v) +2(\ divu’).

At this point in the derivation one restricts u’ by requiring

u’ to satisfy some appropriate kind of zero-value boundary
condition so that.

(A, divu’y = —(grad A\, u’). (7)

So 0 = (u',u—v—grad\). Assume that there is still enough
freedom in the choice of u’ to conclude that

(8)

Substituting this into the constraint equation divu = s
gives

u=v+ grad \.

divgrad A =s —divv 9)
This is a necessary condition to have a minimum. To pick
out a single solution, we need to impose boundary condi-
tions on this abstract Poisson equation. We derive these
boundary conditions by attempting to show that u satisfy-
ing (8) and (9) is the minimum and seeing what additional
assumptions we need.

Let f be another vector that satisfies the discrete divergence
condition divf = s, and write f = u+ w. So divw = 0.
f = v+ (grad\) + w. Then ||f —v|]? = |[grad X + w]||? =
(grad \+w, grad \+w) = ||grad \||% +2(grad \, w) + || w||%.
Since we could replace w with its opposite, this is minimized
at w = 0 if and only if

(grad A, w) = 0. (10)

So the key to minimizing distance is orthogonal projec-
tion. Indeed, observe that

(u—v,w) = (grad \,w) =0 (11)

C.3 Statement of continuum problem

We recall the continuum problem:

Let v be a vector field on the domain 2.

Let o be a desired divergence.

Find u that minimizes ||u — v||? subject to the constraint
that V-u=o0in Q.

C.4 Solution

Use Lagrange multipliers.

Let L(u,\) = [(u—v)*+ [, 2X(V-u—0), where X is a
Lagrange multiplier function, and where dom(\) = .

We minimize L.

Perturbing the multipliers simply recovers the constraints.

Let u’ be a test perturbation.

dele—oL(u+eu) = [2(u—v)-u' + [, 2AV - u'.

The left hand side should be zero. If we impose u’ = 0 on
00, we get: 0= [ 2(u—v)-u' — [,2VA-u’.

Since u’ is arbitrary, we get 0 = 2(u — v) — 2V, i.e,,

u=v-+V\Ain Q. (12)
Substituting this into the constraint equations gives the
equation:

VPIA=0-V vinQ. (13)
This is a necessary condition to have a minimum. To pick
out a single solution, we need to impose boundary condi-
tions on this Poisson equation. We derive these boundary
conditions by attempting to show that u satisfying equa-
tions (12) and (13) is the minimum and seeing what addi-
tional assumptions are necessary.

Let f be another function that satisfies V- f = ¢, and write
f=u+w=v+VA+w. SoV-w=0. Then [|f —v|?*=
VA + w2 = (VA +w,VA+w) = |[VA|? +2(V\w) +
|wl|?. Since we could replace w with its opposite, this is
minimized at w = 0 if and only if (VA, w) = 0. So the key
to minimizing distance is orthogonal projection.

But (VA,w) = [, VAw = [, V-(Aw)— [, /\M = fon

0
(Aw), which equals 0 if we impose homogeneous Dirichlet
boundary conditions, i.e., A = 0 on 9f).



