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1 Abstract Problem

1.1 Definitions

Let H denote a Hilbert space with inner product denoted
by 〈, 〉 and norm ‖ · ‖ defined by ‖w‖ = 〈w,w〉1/2 ∀w.

1.2 Problem

Given vectors v and s, minimize ‖u − v‖2 subject to the
constraint that divu = s.

1.3 Solution framework

Suppose that u is the minimizer. Let f = u+w also satisfy
div f = s, i.e., divw = 0. Now ‖f −v‖2 = ‖(u−v)+w‖2 =
‖u − v‖2 + 2〈u − v,w〉 + ‖w‖2. Since we could replace
w with its opposite, this is minimized at w = 0 only if
〈u− v,w〉 = 0. (That is, u is the orthogonal projection

of v onto the linear manifold of all f satisfying div f = s.)

In general we will claim that the minimizer u is specified
by

(u − v) = gradλ, (1)

where λ is restricted to belong to a class of functions satis-
fying the adjoint property

〈gradλ,w〉 = −〈λ, divw〉. (2)

In each particular case, we show that λ will satisfy this
adjoint property if we require λ to satisfy an appropriate
Dirichlet boundary condition of the form λ = 0 on ∂Ω.

Since divw = 0, it is enough for there to exist a λ satisfying
(8) and satisfying (7). Substituting (8) into the constraint
divu = 0 gives the abstract Poisson equation

div gradλ = s− divv. (3)

So the problem reduces to showing that there is a unique λ

that solves the Poisson equation (9) from a class of vectors
λ which satisfy the adjoint property (7).

2 Continuum problem

2.1 Definitions of continuum problem

Let Ω be a nice domain.
For u,w vector fields on Ω, let 〈u,w〉 :=

∫

Ω
u · w.

2.2 Statement of continuum problem

Let v be a vector field on the domain Ω.
Let σ be a desired divergence.
Find u that minimizes ‖u − v‖2 subject to the constraint

that ∇ · u = σ in Ω.

2.3 Solution

For this continuum problem there exists a unique solution
to the Poisson equation (9) with Dirichlet boundary condi-
tions λ = 0 on ∂Ω, and such λ indeed satisfies the adjoint
property (7):

〈gradλ,w〉 =
∫

Ω
(∇λ) · w =

∫

Ω
∇ · (λw) −

∫

Ω
λ∇ ·w

= −〈λ,∇ ·w〉, as needed.

3 Definitions for discrete calculus

Let 〈f ,g〉ba =
∑b

i=a figi denote a generalized inner product.

Let Ek = f 7→ {fi+k}i∈Z be the shift operator. Let E+ :=
E+1 and E− := E−1.

Let D+ := E+ − E0

Let D− := E0 − E−

Observe that 〈f ,g〉ba = 〈Ekf , Ekg〉b−k
a−k.

4 Staggered discrete 1D problem

4.1 Problem

Given the scalar sequences v = {vi}
m
i=1 and s = {si}

m−1
i=1 ,

find u = {ui}
m
i=1 that minimizes ‖u − v‖ =

∑m
i=1

(ui −
vi)

2, subject to the constraint that (D+u)i = si for i =
1, . . . , (m − 1).

4.2 Solution

Adopt the following definitions

Let div = D+.

Let grad = D−.

Require that λ satisfy the Dirichlet boundary conditions

λ0 = 0 = λm. (4)

We need to show that for such λ the following properties
hold.

1. λ satisfies the adjoint property. Indeed,

〈gradλ,w〉 := 〈D−λ,w〉m1
= 〈λ,w〉m1 − 〈E−λ,w〉m1
= 〈λ,w〉m1 − 〈λ, E+w〉m−1

0

= −〈λ, D+w〉m−1
1 + λmwm − λ0w1

= 0, using (4) and divw = 0.

2. There is a unique λ that satisfies the Poisson equation
(9).

To show this, we write out the Poisson equation (9)
explictly as a linear system:

−λi+1 + 2λi − λi−1 = gi for 1 ≤ i ≤ (m − 1),

where g := divv − s.

Using the Dirichlet boundary conditions λ0 = 0 = λm

and writing the system in matrix form, we see that we
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have a tridiagonal system:
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5 Staggered discretized 1D prob-
lems

5.1 Staggered divergence problem

Find u that minimizes ‖u − v‖ :=
∑m

i=1
(ui − vi)

2 subject

to ui+1−ui

dx = si+1/2 for i = 1, . . . , (m − 1).

Solution: Let s̃i = (dx) si+1/2, and map onto the previous

problem. (It’s also helpful to consider a mapping λ̃i =
λi+1/2.)

5.2 Staggered vector problem

Find u that minimizes ‖u − v‖ :=
∑n

i=1
(ui−1/2 − vi−1/2)

2

subject to
ui+1/2−ui−1/2

dx = si for 1 ≤ i ≤ (n − 1).

Solution: Let ũi = ui−1/2, let s̃ = (dx) s, let m = n − 1,
and map onto the previous problem.

A Even/odd discrete 1D problem

A.1 Problem

Find u = {ui}
m+1
i=0 that minimizes ‖u − v‖ =

∑m+1

i=0
(ui −

vi)
2, subject to the constraint that (Du)i = si for i =

1, . . . , m, where D := E+ − E−.

A.2 Solution

Let n = m + 1.
Let div : u 7→ {ui+1 − ui−1}

m
i=1 be the discrete divergence

operator.
Let grad : λ 7→ {λi+1 − λi−1}

n
i=0 be the discrete gradient

operator.
Let 〈f ,g〉 := 〈f ,g〉n0 for f ,g ∈ V and let 〈λ, div f〉 :=
〈λ, div f〉m1 denote default inner products.

Impose the boundary conditions

0 = λm+2 = λm+1 and 0 = λ−1 = λ0, (5)

For Section 1 to go through, we must verify the following
two properties.

• We need that λ satisfies the adjoint property
〈gradλ,w〉 = 0, as in (7). Indeed:

〈gradλ,w〉 := 〈gradλ,w〉n0
= 〈E+λ,w〉n0 − 〈E−λ,w〉n0
= 〈λ, E−w〉n+1

1 − 〈λ, E+w〉n−1
−1

= λn+1wn + λnwn−1 − λ0w1 − λ−1w0 − 〈λ, div w〉m1
= 0, using (5) and divw = 0.

This decouples the system into a pair of tridiagonal
systems for even and odd indices.

• We need that

div gradλ = s− divv. (6)

as in (9).

Writing out the system explicitly and using the Dirich-
let boundary conditions gives a decoupled pair of tridi-
agonal systems for even and odd indices.

B Even/odd discretized 1-D prob-

lem

Let dx be the mesh size.
Let div : u 7→ {ui+1−ui−1

2 dx }m
i=1 be the discrete divergence

operator.
Let s = {si}

m
i=1 be a desired discrete divergence.

Let grad : λ 7→ {λi+1−λi−1

2 dx }n
i=0 be the discrete gradient

operator.

B.1 Problem

Find u = {ui}
n
i=0 that minimizes ‖u−v‖ =

∑n
i=0

(ui−vi)
2.

subject to the constraint that (divu)i = si for i = 1, . . . , m.

Solution: Let s̃ = 2 dx s and map onto the previous prob-
lem.
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C Derivation of solution using La-

grange multipliers

C.1 Statement of abstract problem

We recall the abstract problem: Given vectors v and s,
minimize ‖u−v‖2 subject to the constraint that divu = s.

C.2 Derivation of solution

Use Lagrange multipliers.
Let L(u, λ) = ‖u−v‖2+2〈λ, divu−s〉. We seek a stationary
point.

Set 0 = dǫ|ǫ=0L(u, λ + ǫλ′) = 2〈λ′, divu − s〉. Since this
must be true for arbitrary λ′, we recover the constraint
equation divu = s.

Set 0 = dǫ|ǫ=0L(u + ǫu′, λ)

= dǫ|ǫ=0

(

‖u + ǫu′ − v‖2 + 2〈λ, div (u + ǫu′) − s〉
)

= dǫ|ǫ=0

(

‖u− v‖2 + ǫ2〈u′,u− v〉+ ǫ2‖u′‖2

)

+ 2〈λ, divu′〉

= 2〈u′,u− v〉 + 2〈λ, divu′〉.

At this point in the derivation one restricts u′ by requiring
u′ to satisfy some appropriate kind of zero-value boundary
condition so that.

〈λ, divu′〉 = −〈gradλ,u′〉. (7)

So 0 = 〈u′,u−v−gradλ〉. Assume that there is still enough
freedom in the choice of u′ to conclude that

u = v + gradλ. (8)

Substituting this into the constraint equation divu = s

gives

div gradλ = s− divv (9)

This is a necessary condition to have a minimum. To pick
out a single solution, we need to impose boundary condi-
tions on this abstract Poisson equation. We derive these
boundary conditions by attempting to show that u satisfy-
ing (8) and (9) is the minimum and seeing what additional
assumptions we need.

Let f be another vector that satisfies the discrete divergence
condition div f = s, and write f = u + w. So divw = 0.
f = v + (gradλ) + w. Then ‖f − v‖2 = ‖gradλ + w‖2 =
〈gradλ+w, gradλ+w〉 = ‖gradλ‖2 +2〈gradλ,w〉+‖w‖2.
Since we could replace w with its opposite, this is minimized
at w = 0 if and only if

〈gradλ,w〉 = 0. (10)

So the key to minimizing distance is orthogonal projec-

tion. Indeed, observe that

〈u − v,w〉 = 〈gradλ,w〉 = 0 (11)

C.3 Statement of continuum problem

We recall the continuum problem:
Let v be a vector field on the domain Ω.
Let σ be a desired divergence.
Find u that minimizes ‖u − v‖2 subject to the constraint

that ∇ · u = σ in Ω.

C.4 Solution

Use Lagrange multipliers.
Let L(u, λ) =

∫

Ω
(u − v)2 +

∫

Ω
2λ(∇ · u − σ), where λ is a

Lagrange multiplier function, and where dom(λ) = Ω.
We minimize L.

Perturbing the multipliers simply recovers the constraints.
Let u′ be a test perturbation.
dǫ|ǫ=0L(u + ǫu′) =

∫

Ω
2(u − v) · u′ +

∫

Ω
2λ∇ · u′.

The left hand side should be zero. If we impose u′ = 0 on
∂Ω, we get: 0 =

∫

Ω
2(u− v) · u′ −

∫

Ω
2∇λ · u′.

Since u′ is arbitrary, we get 0 = 2(u − v) − 2∇λ, i.e.,

u = v + ∇λ in Ω. (12)

Substituting this into the constraint equations gives the
equation:

∇2λ = σ −∇ · v in Ω. (13)

This is a necessary condition to have a minimum. To pick
out a single solution, we need to impose boundary condi-
tions on this Poisson equation. We derive these boundary
conditions by attempting to show that u satisfying equa-
tions (12) and (13) is the minimum and seeing what addi-
tional assumptions are necessary.

Let f be another function that satisfies ∇· f = σ, and write
f = u + w = v + ∇λ + w. So ∇ · w = 0. Then ‖f − v‖2 =
‖∇λ + w‖2 = 〈∇λ + w,∇λ + w〉 = ‖∇λ‖2 + 2〈∇λ,w〉 +
‖w‖2. Since we could replace w with its opposite, this is
minimized at w = 0 if and only if 〈∇λ,w〉 = 0. So the key
to minimizing distance is orthogonal projection.

But 〈∇λ,w〉 =
∫

Ω
∇λ·w =

∫

Ω
∇·(λw)−

∫

Ω
λ∇ · w

︸ ︷︷ ︸

0

=
∮

∂Ω
n·

(λw), which equals 0 if we impose homogeneous Dirichlet
boundary conditions, i.e., λ = 0 on ∂Ω.
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