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1 Kinetic Quantities

A plasma is made up of a large number of charged particles.
Each particle has a position r and velocity v := ṙ that
depend on time t. Each particle also has a mass m and a
charge q. Assume that for a given species of particle (say p)
particle positions and velocities are distributed according
to the distribution function f(r,v, t). That is, the number
of particles in an infinitesimal phase space volume element
d3rd3v is fd3rd3v.

When we need to specify the species of particle to which a
quantity refers, we will use a species index. When a species-
dependent variable lacks a species index, it is assumed that
the default species of interest p is being referred to. (e.g.
f = fp by default.) So fs will typically refer to the distri-
bution function of a second species.

The position of a particle in phase space is R := (r,v). So
the velocity in phase space is V := Ṙ = (ṙ, v̇) =: (v,a). a
is the force per mass. So a is a function of t, r, and v. We
will assume that this function is smooth.

It is useful to divide the forces on particles into two types:
collision forces and macroscopic forces. The advantage of
this division is that it allows us to say that a is given by the
macroscopic forces (which are smoothly varying and are in-
dependent of individual particles). The cost of this division
is that collisions must be modeled separately. Collisions
cause the velocity of particles to change abruptly.

2 Liouville equation

Let’s begin by assuming that we can ignore particle colli-
sions. Since the velocity in phase space is a smooth func-
tion of position in phase space, we can regard particles as
flowing through phase space with velocity V . This means
that we can think of the probability density as a fluid flow-
ing through phase space. Since particles are conserved, the
probability density of particles is conserved. We can apply
the Reynolds transport theorem to a 6-dimensional volume
being convected through phase space. This tells us that the
“conservative derivative” of the probability density of par-
ticles is zero:
∂tf + ∇R · (V f) = 0.
Since R = (r,v) and V = (v,a), this says:

∂tf + ∇r · (vf) + ∇v · (af) = 0 (Liouville equation)

3 Acceleration

Assume that the force on a particle is
q(E(r, t) + v × B(r, t)) + mg(r, t),
where E is the electric field, B is the magnetic field, and
g is the gravitational field.

Then a = ap = (
qp

mp
(E + v × B) + g)

4 Aside: incompressible flow in
phase space.

We can recast this equation in terms of the gradients of
f by showing that V is incompressible in phase space, i.e.
∇R · V = 0. This follows from the following two facts:

(1) ∇r · v = 0, since r and v are independent variables.

(2) ∇v · a = q
m

∂
∂vi

ǫijkvjBk(r, t) = 0

So we can rewrite the Liouville equation as:

∂tf + v · ∇rf + a · ∇vf = 0 (Vlasov equation)

5 Collision Operator

Often it is necessary to take particle collisions into account.
The Liouville equation can be modified to incorporate col-
lisions. If f is reasonably smooth, we can handle collisions
by time-splitting: we allow the particles to move without
colliding for an infinitesimal time interval, and then allow
the distribution f(t, r,v) at each position r to evolve inde-
pendently of the distribution at other positions (as if all of
space were filled with particles having velocities distributed
as they are at the position in question. The nonlinear oper-
ator that governs the evolution of a distribution f0(t,v) is
called the collision operator, and depends on the physics of
the particles. Incoporating the collision operator into the
Liouville equation gives the Boltzmann equation:

∂tf + ∇r · (vf) + ∇v · (af) =
∑

s Cs
p[fp, fs]

where Cs
p[fp, fs](r,v, t) denotes the rate of change of fp as

a result of collisions with particles of species s. Typically
we will write Cs

p or merely Cs for Cs
p[fp, fs].

6 Moments

Let M(r,v, t) be an arbitrary function of phase space.
Define

∫

v
=

∫

v∈R3 .

Define 〈M〉 := 〈M〉p(r, t) :=
R

v
fpM

R

v
fp

(∀M).

Let n := np :=
∫

v
fp.

So
∫

v
fpM = np〈M〉p .

Let u := up := 〈v〉p

Let dt := d
p
t ∂t + u · ∇ denote the convective derivative.

Let δ̄t := δ̄
p
t := α 7→ (∂tα+∇·(uα)) denote the conservative

derivative.
Observe that the following Leibnitz rules hold:

δ̄t(αβ) = dt(αβ) + (∇ · u)αβ

= (dtα)β + α(dtβ) + (∇ · u)αβ

= (δ̄tα)β + α(dtβ)
= (dtα)β + α(δ̄tβ).
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7 General Moment Calculation.

We wish to compute the zeroth, first, and second velocity
moments.

Let χ(v) be a tensor of monomials in the components of v.
We are specifically interested in the cases:

χ(v) =







1 zeroth moment
v first moment
v2 second moment

Apply the moment-generating operator α 7→
∫

v
αχ to the

terms of the Boltzmann equation:
∂t

∫

v
fχ +

∫

v
∇r · (vf)χ +

∫

v
∇v · (af)χ =

∑

s

∫

v
Csχ

These terms simplify as follows:

• (density term) = ∂t

∫

v
fχ = ∂t(n〈χ〉)

• (velocity term) =
∫

v
∇r · (vf)χ = ∇r ·

∫

v
(vfχ)

= ∇ · (n〈vχ〉)

• (force term) =
∫

v
∇v · (af)χ

=

∫

v

(∇v · (afχ))

︸ ︷︷ ︸

0 if f→0 fast

−
∫

v
(af · ∇vχ)

= −n〈a · ∇vχ〉

• (collision term) =
∑

s

∫

v
Csχ

So the general averaged moment of the Boltzmann equation
becomes:

∂t(n〈χ〉) + ∇ · (n〈vχ〉) = n〈a · ∇vχ〉 +
∑

s

∫

v
Csχ

Multiply this equation by m and let ρ := mn to get a form

that is convenient for expressing conservation laws.

∂t(ρ〈χ〉) + ∇ · (ρ〈vχ〉) = ρ〈a · ∇vχ〉 +
∑

s

∫

v
Csmχ

(Averaged moment Boltzmann equation for momentum
and energy balance.)
(Remember to read here 〈〉p, np, ρp, mp, ap, and Cs

p.)

8 Collisions and conservation.

The collision operator satisfies the following conservation
constraints.

8.1 Conservation of particles. (χ = 1)

Collisions cannot change the number of particles at a given
position, so: ∫

v

Cs
p = 0

This ignores any particle production or destruction pro-
cesses such as ionization or recombination.

8.2 Conservation of momentum and en-
ergy. (χ = v, v

2)

Let Rs := Rs
p :=

∫

v
Cs

pmpv represent the drag force on

species p due to collisions with species s.

Let Ks := Ks
p := 1

2

∫

v
Cs

pmpv
2 represent the energy trans-

fer to species p from species s due to collisions.

Collisions between particles of the same species cannot
change the total momentum and energy of that species,
so:

Rp
p = 0 and Kp

p = 0

Collision between different species must conserve the total
momentum and energy of the two species, so:

Rs
p + Rp

s = 0 and Ks
p + Kp

s = 0

8.3 Relative momentum transfer.

We show that the collisional drag force depends on the par-
ticle velocities relative to the average fluid velocity.

Write v = u + c, where c is called the “peculiar” or “ther-
mal” velocity. (i.e. cp := v − up .)

Observe that 〈c〉 = 0.

Observe by conservation of particles that Rs
p =

∫

v
Csmc .

8.3.1 Form of drag force constitutive relation.

It is often assumed that the drag force is proportional to the
difference between the average velocities of the species:

Rs
p = mpnpνps(us − up)
where the proportionality constant νps is called the colli-

sion frequency for momentum transfer from species s to

species p.
Since Rs

p + Rp
s = 0, the collision frequencies νps and νsp

must satisfy the relation ρpνps = ρsνsp.

8.4 Relative energy transfer.

The collision operator can be decomposed into work done
by the drag force and heat transfer due to collisions. We
use conservation of particles and the definition of the drag
force Rs.

The collisional energy transfer is:
Ks = 1

2

∫

v
Csm(u + c) · (u + c)

= 1

2

∫

v
Csm(u · u + 2u · c + c · c)

= ����
∫

v
Csm 1

2
u2 + u ·

∫

v
Csmc +

∫

v
Csm 1

2
c · c

So Ks = u ·Rs + Qs , where Qs := Qs
p :=

∫

v
Cs 1

2
mc2

denotes direct transfer of thermal energy from species s

to species p due to collisions. Note that Rs
p · u represent

work done by the drag force.

8.4.1 Form of constitutive relation for interspecies
thermal energy transfer rate (Qs).

(Alec’s conjecturing.) If the species have zero relative mo-
tion, one would naturally posit Newton’s law of heat ex-
change – that heat exchange between species is proportional
to the difference in temperature:

Qs
p = kpsρpρs(Tp − Ts)

Does such a relation continue to hold if the species have
different averaged velocities? Can we use some idea of time
splitting here?
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9 Zeroth moment: Particle conser-

vation.

Setting χ = 1, we see that the zeroth moment of the
Boltzmann equation simply states conservation of particles:

∂t(ρ) + ∇ · (ρu) = 0 , where u := 〈v〉 .

10 First moment: Momentum bal-
ance.

Set χ = v in the Boltzmann equation to get the momentum
balance equation: ∂t(ρ〈v〉)+∇· (ρ〈vv〉) = ρ〈a〉+

∑

s Rs.

Separate microscopic and macroscopic components in the
inertial term:
〈vv〉 = 〈(u + c)(u + c)〉
= 〈uu + uc + cu + cc〉
= uu + 〈cc〉.

So the momentum equation becomes:
∂t(ρu) + ∇ · (ρuu) = −∇ · (ρ〈cc〉) + ρ〈a〉 +

∑

s Rs.

Make the replacement P := ρ〈cc〉 = (pressure).

(Recall that the (gas-dynamic) pressure tensor P is defined
by the property that n·P is the surface force per unit area
acting on the body (i.e. the diffusive flux of momentum
into the body).)

Invoke the conservative derivative (for up):
δ̄t := δ̄

p
t := α 7→ ∂tα + ∇ · (upα)

So the momentum equation becomes:

δ̄t(ρu) = −∇ ·P + ρ〈a〉 +
∑

s Rs

10.1 Balance of kinetic energy

To obtain a balance law for the macrosopic kinetic energy,
dot the momentum balance law with the fluid velocity.
δ̄t(ρu) · u = ρ(dtu) · u = ρdt(

1

2
u2) = δ̄t(

1

2
ρu2) So:

δ̄t(
1

2
ρu2) = (−∇ ·P) · u + ρ〈a〉 · u +

∑

s Rs · u

10.2 Form of body force

Recall that a = (
qp

mp
(E + v × B) + g).

Let Jp := npqpup represent the current.

Let σp := npqp denote charge density.

So the body force is ρ〈a〉 = nqp(E + u × B) + ρg, i.e.

ρ〈a〉 = σE + J × B + ρg

So the momentum equation becomes:

δ̄t(ρu) = −∇ ·P + (σE + J × B + ρg) +
∑

s Rs

(Remember to read here (ρu)p, Pp, σp, Jp, and Rs
p.)

11 Second moment: Energy con-

servation.

Set χ = 1

2
v2 in the Boltzmann equation to get conservation

of energy:
∂t(

1

2
ρ〈v2〉) + ∇ · (1

2
ρ〈vv2〉) = ρ〈a · v〉 +

∑

s

∫

v
Cs 1

2
mv2

To express in macroscopic quantities,
use v = u + c and 〈c〉 = 0 in each term.
Note that v2 = (u + c) · (u + c)) = u2 + 2u · c + c2.

The means become:

• 〈v2〉 = 〈(u + c) · (u + c)〉 = 〈u2 + 2u · c + c · c〉
= u2 + 〈c2〉.

• 〈vv2〉
= 〈(u + c)(u2 + 2u · c + c2)〉
= 〈(uu2 +����2uu · c + uc2 +�

�cu2 + 2cu · c + cc2〉
= uu2 + u〈c2〉 + 2〈cc〉 · u + 〈cc2〉

• Claim 〈a · v〉 = 〈( q
m

E + g) · v〉 = 〈a〉 · 〈v〉.

Indeed, 〈a · v〉 = 〈( q
m

(E + v × B) + g) · v〉
= 〈( q

m
(E + g) · v〉 +

(((((((
〈 q

m
(v × B) · v〉

= ( q
m

E + g) · 〈v〉.

Similarly, 〈a〉 · 〈v〉
= 〈( q

m
(E + v × B) + g)〉 · 〈v〉

= ( q
m

(E + 〈v〉 × B) + g) · 〈v〉
= ( q

m
E + g) · 〈v〉 +

(((((((q
m
〈v〉 × B · 〈v〉, as needed.

So ρ〈a · v〉 = (ρ〈a〉) · u = (σE + ρg) · u

Substituting these values for the averages in the second mo-
ment equation above gives the equation:

∂t

(
1

2
ρ(u2 + 〈c2〉)

)
+ ∇ ·

(
1

2
ρ(uu2 + u〈c2〉)

)

= ρ〈a〉 · u −∇ · (ρ〈cc〉 · u) −∇ ·
(

1

2
ρ〈cc2〉

)
+

∑

s Ks.
Make the replacements

P = ρ〈cc〉 = (pressure),

q := 1

2
ρ〈cc2〉 = (heat flux per volume), and

e := 1

2
〈c2〉 = (thermal energy per mass).

Get: ∂t

(
ρ(1

2
u2 + e)

)
+ ∇ ·

(
ρu(1

2
u2 + e)

)

= (ρ〈a〉) · u−∇ · (P · u) −∇ · q +
∑

s Ks, i.e.

δ̄t

(
1

2
ρu2 + ρe

)
= (σE + ρg) · u −∇ · (P · u) −∇ · q

+
∑

s(R
s · u + Qs)

(Remember to read here δ̄
p
t ,(

1

2
ρu2 + ρe)p, σp, ρp, up, Pp,

qp, Rs
p, and Qs

p.)

11.1 Balance of thermal energy

Now subtract the balance of macroscopic kinetic energy
from the total energy balance to get thermal energy bal-
ance:

δ̄t (ρe) = −P : ∇u −∇ · q +
∑

s Qs
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