# Matrix algebra 

by Alec Johnson

April 19, 2010

## 1 Determinant of a block matrix

We seek a formula for the determinant of a block matrix
$\left(\begin{array}{ll}\mathrm{A} & \mathrm{B} \\ \mathrm{C} & \mathrm{D}\end{array}\right)$
Suppose D is invertible. Factor:

$$
\left(\begin{array}{ll}
\mathbf{A} & \mathbf{B} \\
\mathbf{C} & \mathbf{D}
\end{array}\right) \cdot\left(\begin{array}{cc}
\mathbf{I} & \mathbf{0} \\
-\mathbf{D}^{-1} \mathbf{C} & \mathbf{I}
\end{array}\right)=\left(\begin{array}{cc}
\mathbf{A}-\mathbf{B D}^{-1} \mathbf{C} & \mathbf{B} \\
\mathbf{0} & \mathbf{D}
\end{array}\right),
$$

so

$$
\operatorname{det}\left(\begin{array}{ll}
\mathbf{A} & \mathbf{B} \\
\mathbf{C} & \mathbf{D}
\end{array}\right)=\operatorname{det}\left(\mathbf{A}-\mathbf{B D}^{-1} \mathbf{C}\right) \cdot \operatorname{det}(\mathbf{D})=\operatorname{det}\left(\mathbf{A D}-\mathbf{B D}^{-1} \mathbf{C D}\right)
$$

So if crossing out all rows and corresponding columns except $n$ of them gives a matrix that is easy to invert, then you can simplify the evalution of the determinant.

## References

[1] John R. Silvester, Determinants of Block Matrices, http://www.mth.kcl.ac.uk/~jrs/gazette/ blocks.pdf
[2] http://en.wikipedia.org/wiki/Determinant

