Translation between Heaviside-Lorentz (HL), Gaussian (cgs), and SI (mks or "rationalized") systems of units

by E. Alec Johnson,
August 31, 2009

1 Definitions

variable	meaning
n	particle density
q	charge per particle
m	mass per particle
$\mathbf{v}(\mathbf{x}, t)$	velocity of particles
$d_{t}=\partial_{t}+\mathbf{v} \cdot \nabla$	convective derivative

variable	meaning
\mathbf{B}	magnetic field
\mathbf{E}	electric field
c	speed of light
ϵ_{0}	permittivity of free space

One way to determine how to relate quantities in different units is to make the equations of the one system look like the equations of the corresponding system. In this note we take this approach to relate HeavisideLorentz, Gaussian, SI units. For simplicity we derive dimension transformations using Maxwell's equations with the momentum equation for a cold one-species plasma, rather than with the momentum equation for individual particles or with the Boltzmann equation.

2 Heaviside-Lorentz (HL) \longleftrightarrow Gaussian

Heaviside-Lorentz	Gaussian-looking
$\nabla \cdot \mathbf{E}=q n$	$\nabla \cdot(\sqrt{4 \pi} \mathbf{E})=4 \pi\left(\frac{q}{\sqrt{4 \pi}}\right) n$
$\nabla \cdot \mathbf{B}=0$	$\nabla \cdot(\sqrt{4 \pi} \mathbf{B})=0$
$\partial_{t} \mathbf{B}+c \nabla \times \mathbf{E}=0$	$\partial_{t}(\sqrt{4 \pi} \mathbf{B})+c \nabla \times(\sqrt{4 \pi} \mathbf{E})=0$
$\partial_{t} \mathbf{E}-c \nabla \times \mathbf{B}=-q n \mathbf{v}$	$\partial_{t}(\sqrt{4 \pi} \mathbf{E})-c \nabla \times(\sqrt{4 \pi} \mathbf{B})=-4 \pi\left(\frac{q}{\sqrt{4 \pi}}\right) n \mathbf{v}$
$m n d_{t} \mathbf{v}=q n\left(\mathbf{E}+\frac{\mathbf{v}}{c} \times \mathbf{B}\right)$	$m n d_{t} \mathbf{v}=\left(\frac{q}{\sqrt{4 \pi}}\right) n\left((\sqrt{4 \pi} \mathbf{E})+\frac{\mathbf{v}}{c} \times(\sqrt{4 \pi} \mathbf{B})\right)$

Gaussian	Heaviside-Lorentz-looking
$\nabla \cdot \mathbf{E}=4 \pi q n$	$\nabla \cdot\left(\frac{\mathbf{E}}{\sqrt{4 \pi}}\right)=(\sqrt{4 \pi} q) n$
$\nabla \cdot \mathbf{B}=0$	$\nabla \cdot\left(\frac{\mathbf{B}}{\sqrt{4 \pi}}\right)=0$
$\partial_{t} \mathbf{B}+c \nabla \times \mathbf{E}=0$	$\partial_{t}\left(\frac{\mathbf{B}}{\sqrt{4 \pi}}\right)+c \nabla \times\left(\frac{\mathbf{E}}{\sqrt{4 \pi}}\right)=0$
$\partial_{t} \mathbf{E}-c \nabla \times \mathbf{B}=-4 \pi q n \mathbf{v}$	$\partial_{t}\left(\frac{\mathbf{E}}{\sqrt{4 \pi}}\right)-c \nabla \times\left(\frac{\mathbf{B}}{\sqrt{4 \pi}}\right)=-(\sqrt{4 \pi} q) n \mathbf{v}$
$m n d_{t} \mathbf{v}=q n\left(\mathbf{E}+\frac{\mathbf{v}}{c} \times \mathbf{B}\right)$	$m n d_{t} \mathbf{v}=(\sqrt{4 \pi} q) n\left(\left(\frac{\mathbf{E}}{\sqrt{4 \pi}}\right)+\frac{\mathbf{v}}{c} \times\left(\frac{\mathbf{B}}{\sqrt{4 \pi}}\right)\right)$

$$
\begin{array}{ll}
\mathbf{E}_{\text {gauss }}=\sqrt{4 \pi} \mathbf{E}_{\mathrm{HL}}, & \mathbf{E}_{\mathrm{HL}}=\frac{\mathbf{E}_{\text {gauss }}}{\sqrt{4 \pi}}, \\
\mathbf{B}_{\text {gauss }}=\sqrt{4 \pi} \mathbf{B}_{\mathrm{HL}}, & \mathbf{B}_{\mathrm{HL}}=\frac{\mathbf{B}_{\text {gauss }}}{\sqrt{4 \pi}}, \\
q_{\text {gauss }}=\frac{q_{\mathrm{HL}}}{\sqrt{4 \pi}}, & q_{\mathrm{HL}}=\sqrt{4 \pi} q_{\text {gauss }} .
\end{array}
$$

3 Heaviside-Lorentz (HL) \longleftrightarrow SI

Heaviside-Lorentz	SI-looking
$\nabla \cdot \mathbf{E}=q n$	$\nabla \cdot\left(\frac{\mathbf{E}}{\sqrt{\epsilon_{0}}}\right)=\frac{\left(\sqrt{\epsilon_{0}} q\right) n}{\epsilon_{0}}$
$\nabla \cdot \mathbf{B}=0$	$\nabla \cdot\left(\frac{\mathbf{B}}{c \sqrt{\epsilon_{0}}}\right)=0$
$\partial_{t} \mathbf{B}+c \nabla \times \mathbf{E}=0$	$\partial_{t}\left(\frac{\mathbf{B}}{c \sqrt{\epsilon_{0}}}\right)+\nabla \times\left(\frac{\mathbf{E}}{\sqrt{\epsilon_{0}}}\right)=0$
$\partial_{t} \mathbf{E}-c \nabla \times \mathbf{B}=-q n \mathbf{v}$	$\partial_{t}\left(\frac{\mathbf{E}}{\sqrt{\epsilon_{0}}}\right)-c^{2} \nabla \times\left(\frac{\mathbf{B}}{c \sqrt{\epsilon_{0}}}\right)=-\frac{\left(\sqrt{\epsilon_{0}} q\right) n \mathbf{v}}{\epsilon_{0}}$
$m n d_{t} \mathbf{v}=q n\left(\mathbf{E}+\frac{\mathbf{v}}{c} \times \mathbf{B}\right)$	$m n d_{t} \mathbf{v}=\left(\sqrt{\epsilon_{0}} q\right) n\left(\left(\frac{\mathbf{E}}{\sqrt{\epsilon_{0}}}\right)+\mathbf{v} \times\left(\frac{\mathbf{B}}{c \sqrt{\epsilon_{0}}}\right)\right)$

SI	Heaviside-Lorentz-looking
$\nabla \cdot \mathbf{E}=\frac{q n}{\epsilon_{0}}$	$\nabla \cdot\left(\sqrt{\epsilon_{0}} \mathbf{E}\right)=\left(\frac{q}{\sqrt{\epsilon_{0}}}\right) n$
$\nabla \cdot \mathbf{B}=0$	$\nabla \cdot\left(c \sqrt{\epsilon_{\epsilon^{\prime}}} \mathbf{B}\right)=0$
$\partial_{t} \mathbf{B}+\nabla \times \mathbf{E}=0$	$\partial_{t}\left(c \sqrt{\epsilon_{0}} \mathbf{B}\right)+c \nabla \times\left(\sqrt{\epsilon_{0}} \mathbf{E}\right)=0$
$\partial_{t} \mathbf{E}-c^{2} \nabla \times \mathbf{B}=-\frac{q n \mathbf{v}}{\epsilon_{0}}$	$\partial_{t}\left(\sqrt{\epsilon_{0}} \mathbf{E}\right)-c \nabla \times\left(c \sqrt{\epsilon_{0} \mathbf{B}}\right)=-\left(\frac{q}{\sqrt{\epsilon_{0}}}\right) n \mathbf{v}$
$m n d_{t} \mathbf{v}=q n(\mathbf{E}+\mathbf{v} \times \mathbf{B})$	$m n d_{t} \mathbf{v}=\left(\frac{q}{\sqrt{\epsilon_{0}}}\right) n\left(\left(\sqrt{\epsilon_{0}} \mathbf{E}\right)+\frac{\mathbf{v}}{c} \times\left(c \sqrt{\epsilon_{0}} \mathbf{B}\right)\right)$

$$
\begin{aligned}
\mathbf{E}_{\mathrm{HL}} & =\sqrt{\epsilon_{0}} \mathbf{E}_{\mathrm{SI}}, & \mathbf{E}_{\mathrm{SI}} & =\frac{\mathbf{E}_{\mathrm{HL}}}{\sqrt{\epsilon_{0}}}, \\
\mathbf{B}_{\mathrm{HL}} & =c \sqrt{\epsilon_{0}} \mathbf{B}_{\mathrm{SI}}, & \mathbf{B}_{\mathrm{SI}} & =\frac{\mathbf{B}_{\mathrm{HL}}}{c \sqrt{\epsilon_{0}}}, \\
q_{\mathrm{HL}} & =\frac{q_{\mathrm{SI}}}{\sqrt{\epsilon_{0}}} . & q_{\mathrm{SI}} & =\sqrt{\epsilon_{0}} q_{\mathrm{HL}} .
\end{aligned}
$$

Notice that there is an SI-looking system for every choice of ϵ_{0}. Choosing $\epsilon_{0}=1$ makes it simple to convert from SI to HL formulas: just replace \mathbf{B} with \mathbf{B} / c and drop ϵ_{0}.

$4 \quad$ SI \longleftrightarrow Gaussian

SI	Gaussian-looking
$\nabla \cdot \mathbf{E}=\frac{q n}{\epsilon_{0}}$	$\nabla \cdot\left(\sqrt{4 \pi \epsilon_{0}} \mathbf{E}\right)=4 \pi\left(\frac{q}{\sqrt{4 \pi \epsilon_{0}}}\right) n$
$\nabla \cdot \mathbf{B}=0$	$\nabla \cdot\left(c \sqrt{4 \pi \epsilon_{0}} \mathbf{B}\right)=0$
$\partial_{t} \mathbf{B}+\nabla \times \mathbf{E}=0$	$\partial_{t}\left(c \sqrt{4 \pi \epsilon_{0}} \mathbf{B}\right)+c \nabla \times\left(\sqrt{4 \pi \epsilon_{0}} \mathbf{E}\right)=0$
$\partial_{t} \mathbf{E}-c^{2} \nabla \times \mathbf{B}=-\frac{q n \mathbf{v}}{\epsilon_{0}}$	$\partial_{t}\left(\sqrt{4 \pi \epsilon_{0}} \mathbf{E}\right)-c \nabla \times\left(c \sqrt{4 \pi \epsilon_{0}} \mathbf{B}\right)=-4 \pi\left(\frac{q}{\sqrt{4 \pi \epsilon_{0}}}\right) n \mathbf{v}$
$m n d_{t} \mathbf{v}=q n(\mathbf{E}+\mathbf{v} \times \mathbf{B})$	$m n d_{t} \mathbf{v}=\left(\frac{q}{\sqrt{4 \pi \epsilon_{0}}}\right) n\left(\left(\sqrt{4 \pi \epsilon_{0}} \mathbf{E}\right)+\frac{\mathbf{v}}{c} \times\left(c \sqrt{4 \pi \epsilon_{0}} \mathbf{B}\right)\right)$

Gaussian	SI-looking
$\nabla \cdot \mathbf{E}=4 \pi q n$	$\nabla \cdot\left(\frac{\mathbf{E}}{\sqrt{4 \pi \epsilon_{0}}}\right)=\frac{\left(\sqrt{4 \pi \epsilon_{0}} q\right) n}{\epsilon_{0}}$
$\nabla \cdot \mathbf{B}=0$	$\nabla \cdot\left(\frac{\mathbf{B}}{c \sqrt{4 \pi \epsilon_{0}}}\right)=0$
$\partial_{t} \mathbf{B}+c \nabla \times \mathbf{E}=0$	$\partial_{t}\left(\frac{\mathbf{B}}{c \sqrt{4 \pi \epsilon_{0}}}\right)+\nabla \times\left(\frac{\mathbf{E}}{\sqrt{4 \pi \epsilon_{0}}}\right)=0$
$\partial_{t} \mathbf{E}-c \nabla \times \mathbf{B}=-4 \pi q n \mathbf{v}$	$\partial_{t}\left(\frac{\mathbf{E}}{\sqrt{4 \pi \epsilon_{0}}}\right)-c^{2} \nabla \times\left(\frac{\mathbf{B}}{c \sqrt{4 \pi \epsilon_{0}}}\right)=-\frac{\left(\sqrt{4 \pi \epsilon_{0}} q\right) n \mathbf{v}}{\epsilon_{0}}$
$m n d_{t} \mathbf{v}=q n\left(\mathbf{E}+\frac{\mathbf{v}}{c} \times \mathbf{B}\right)$	$m n d_{t} \mathbf{v}=\left(\sqrt{4 \pi \epsilon_{0}} q\right) n\left(\left(\frac{\mathbf{E}}{\sqrt{4 \pi \epsilon_{0}}}\right)+\mathbf{v} \times\left(\frac{\mathbf{B}}{c \sqrt{4 \pi \epsilon_{0}}}\right)\right)$

$$
\begin{array}{rlr}
\mathbf{E}_{\mathrm{SI}}=\frac{\mathbf{E}_{\text {gauss }}}{\sqrt{4 \pi \epsilon_{0}}}, & \mathbf{E}_{\text {gauss }}=\sqrt{4 \pi \epsilon_{0}} \mathbf{E}_{\mathrm{SI}}, \\
\mathbf{B}_{\mathrm{SI}} & =\frac{\mathbf{B}_{\text {gauss }}}{c \sqrt{4 \pi \epsilon_{0}}}, & \mathbf{B}_{\text {gauss }}=c \sqrt{4 \pi \epsilon_{0}} \mathbf{B}_{\mathrm{SI}}, \\
q_{\mathrm{SI}} & =\sqrt{4 \pi \epsilon_{0}} q_{\text {gauss }} . & q_{\text {gauss }}=\frac{q_{\mathrm{SI}}}{\sqrt{4 \pi \epsilon_{0}}} .
\end{array}
$$

Notice that there is an SI-looking system for every choice of ϵ_{0}. Choosing ϵ_{0} so that $4 \pi \epsilon_{0}=1$ makes it simple to convert from SI to Gaussian formulas: just replace \mathbf{B} with \mathbf{B} / c and replace ϵ_{0} with $\frac{1}{4 \pi}$.

5 Plasma

We now consider what happens to the plasma equations under transformation between SI and Gaussian units.

6 Boltzmann

SI	Gaussian-looking
$\nabla \cdot \mathbf{E}=\frac{\sigma}{\epsilon_{0}}$	$\nabla \cdot\left(\sqrt{4 \pi \epsilon_{0}} \mathbf{E}\right)=4 \pi\left(\frac{\sigma}{\sqrt{4 \pi \epsilon_{0}}}\right)$
$\nabla \cdot \mathbf{B}=0$	$\nabla \cdot\left(c \sqrt{4 \pi \epsilon_{0}} \mathbf{B}\right)=0$
$\partial_{t} \mathbf{B}+\nabla \times \mathbf{E}=0$	$\partial_{t}\left(c \sqrt{4 \pi \epsilon_{0}} \mathbf{B}\right)+c \nabla \times\left(\sqrt{4 \pi \epsilon_{0}} \mathbf{E}\right)=0$
$\partial_{t} \mathbf{E}-c^{2} \nabla \times \mathbf{B}=-\frac{\mathbf{J}}{\epsilon_{0}}$	$\partial_{t}\left(\sqrt{4 \pi \epsilon_{0}} \mathbf{E}\right)-c \nabla \times\left(c \sqrt{4 \pi \epsilon_{0}} \mathbf{B}\right)=-4 \pi\left(\frac{\mathbf{J}}{\sqrt{4 \pi \epsilon_{0}}}\right)$
$m d_{t} \mathbf{v}_{p}=q_{p}\left(\mathbf{E}+\mathbf{v}_{p} \times \mathbf{B}\right)$	$m d_{t} \mathbf{v}_{p}=\left(\frac{q_{p}}{\sqrt{4 \pi \epsilon_{0}}}\right)\left(\left(\sqrt{4 \pi \epsilon_{0}} \mathbf{E}\right)+\frac{\mathbf{v}_{p}}{c} \times\left(c \sqrt{4 \pi \epsilon_{0}} \mathbf{B}\right)\right)$

Gaussian	SI-looking
$\nabla \cdot \mathbf{E}=4 \pi \sigma$	$\nabla \cdot\left(\frac{\mathbf{E}}{\sqrt{4 \pi \epsilon_{0}}}\right)=\frac{\left(\sqrt{4 \pi \epsilon_{0}} \sigma\right)}{\epsilon_{0}}$
$\nabla \cdot \mathbf{B}=0$	$\nabla \cdot\left(\frac{\mathbf{B}}{c \sqrt{4 \pi \epsilon_{0}}}\right)=0$
$\partial_{t} \mathbf{B}+c \nabla \times \mathbf{E}=0$	$\partial_{t}\left(\frac{\mathbf{B}}{c \sqrt{4 \pi \epsilon_{0}}}\right)+\nabla \times\left(\frac{\mathbf{E}}{\sqrt{4 \pi \epsilon_{0}}}\right)=0$
$\partial_{t} \mathbf{E}-c \nabla \times \mathbf{B}=-4 \pi \mathbf{J}$	$\partial_{t}\left(\frac{\mathbf{E}}{\sqrt{4 \pi \epsilon_{0}}}\right)-c^{2} \nabla \times\left(\frac{\mathbf{B}}{c \sqrt{4 \pi \epsilon_{0}}}\right)=-\frac{\left(\sqrt{4 \pi \epsilon_{0}} \mathbf{J}\right)}{\epsilon_{0}}$
$m_{p} d_{t} \mathbf{v}_{p}=q_{p}\left(\mathbf{E}+\frac{\mathbf{v}_{p}}{c} \times \mathbf{B}\right)$	$m_{p} d_{t} \mathbf{v}_{p}=\left(\sqrt{4 \pi \epsilon_{0}} q_{p}\right)\left(\left(\frac{\mathbf{E}}{\sqrt{4 \pi \epsilon_{0}}}\right)+\mathbf{v}_{p} \times\left(\frac{\mathbf{B}}{c \sqrt{4 \pi \epsilon_{0}}}\right)\right)$

$$
\begin{array}{rlrl}
\mathbf{E}_{\mathrm{SI}} & =\frac{\mathbf{E}_{\text {gauss }}}{\sqrt{4 \pi \epsilon_{0}}}, & \mathbf{E}_{\text {gauss }}=\sqrt{4 \pi \epsilon_{0}} \mathbf{E}_{\mathrm{SI}} \\
\mathbf{B}_{\mathrm{SI}} & =\frac{\mathbf{B}_{\text {gauss }}}{c \sqrt{4 \pi \epsilon_{0}}}, & \mathbf{B}_{\text {gauss }}=c \sqrt{4 \pi \epsilon_{0}} \mathbf{B}_{\mathrm{SI}} \\
\sigma_{\mathrm{SI}} & =\sqrt{4 \pi \epsilon_{0}} \sigma_{\text {gauss }} . & \sigma_{\text {gauss }}=\frac{\sigma_{\mathrm{SI}}}{\sqrt{4 \pi \epsilon_{0}}} . \\
\mathbf{J}_{\mathrm{SI}}=\sqrt{4 \pi \epsilon_{0}} \mathbf{J}_{\text {gauss }} . & \mathbf{J}_{\text {gauss }}=\frac{\mathbf{J}_{\mathrm{SI}}}{\sqrt{4 \pi \epsilon_{0}}} .
\end{array}
$$

7 Conclusion

I prefer to work with SI units because: (1) it is easier to convert from SI units to the other systems than to convert from either of the other systems, and (2) a generic nondimensionalization of the kinetic-Maxwell system yields a system that has the same form as the SI system (if time is nondimensionalized by the gyroperiod - see section A. 2 of my PhD thesis).

