
Fundamental Equations of Plasmas,
by E. Alec Johnson, March 28, 2007

1 Full one-fluid plasma equations.

1.1 Definitions of Quantities.

n = particle number density

1.1.1 Electromagnetic quantities.

B = magnetic field
E = electric field
S = Poynting vector
ε0 = permittivity of vacuum
µ0 = permeability of vacuum
c = speed of light
σ = charge density
J = current density (net charge flux)
η = resistivity

1.1.2 Mechanical quantities.

ρ = net mass density
v = fluid velocity
ρv = momentum density (i.e. mass flux)
p = gas-dynamic pressure
σ = viscous stress tensor
τ = total mechanical stress tensor
T = stress of electromagnetic field
e = deformation rate (strain rate, even part)
µ = shear viscosity
λ = “balancing bulk viscosity”

1.1.3 Thermodynamic quantities.

q = heat flux
T = temperature
κ = heat conductivity
γ = ratio of specific heats
R = gas constant
Ẽ = total energy density
E = gas-dynamic energy
E t = thermal energy
Ek = kinetic energy
Ef = electromagnetic field energy

1.2 Defining and Constituting Relation-
ships.

1.2.1 Electromagnetic relations.

c2µ0ε0 ≡ 1
S := 1

µ0
E×B

E′ = E + v ×B = ηJ

1.2.2 Mechanical relations.

e := 1
2(∇v +∇vT )

σ = λ∇ · vδ + 2µe

λ = −2
3µ (assuming trace(σ) = 0)

τ = −pδ + σ

T := ε0(EE− 1
2E

2δ) + 1
µ0

(BB− 1
2B

2δ)

1.2.3 Thermodynamic relations.

p = ρRT
E t = p

γ−1
Ek := 1

2ρv
2

Ef := ε0
1
2E

2 + 1
2µ0

B2

q = −κ∇T
Ẽ := E + Ef .
E := E t + Ek.

1.3 Definitions of Symbols and Operators.

• ε = permutation tensor

• ∂t := ∂
∂t

• dt := ∂t + v · ∇ = convective derivative.
• δ̄t := α 7→ (∂tα + ∇ · (vα)) = conservative

derivative.

1.4 Full One-fluid Plasma Balance Laws.

The full one-fluid plasma equations are a system of 11
equations which specify the evolution of electromag-
netic field, mass density, momentum, and energy.

1.4.1 Electromagnetic evolution.

Maxwell’s 6 evolution equations with the constraints
that must be maintained by physical solutions are:

∂t

[
B
E

]
+∇×

[
E
−c2B

]
=

[
0
− 1
ε0

J

]
and ∇ ·

[
B
E

]
=

[
0
1
ε0
σ

]
1.4.2 Material balance laws (gas-dynamics)

The material balance laws are simply statements of
conservation of mass, momentum, and energy. See
appendix ?? for a derivation of the electromagnetic
part.

δ̄t

 ρρv
E

+ ∂t

 0
1
c2

S
Ef

+∇ ·

 0
−τ

−τ · v + q

+∇ ·

 0
−T
S

 = 0

i.e. δ̄t

 ρ
ρv

p
γ−1 + 1

2ρv
2

+ ∂t

 0
ε0E×B

ε0
2 E

2 + 1
2µ0

B2

+∇ ·

 0
pδ
pv

 =

∇ ·

 0
σ

σ · v + κ∇T

+∇ ·

 0

ε0(EE− E2

2 δ) + 1
µ0

(BB− B2

2 δ)

− 1
µ0

E×B
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2 Conservation laws for MHD.

The equations of MHD (Magnetohydrodynamics) are
an approximation to the full one-fluid plasma equa-
tions above. The electric field E is eliminated by dis-
carding ∂tE (Ampere’s magnetostatic approximation)
and quadratic order electric field terms.

We will put each law in the form:

∂t(conserved quantity) +∇ · (hyperbolic flux)
= ∇ · (parabolic flux).

2.1 Magnetic field.

The MHD equation for the evolution of B is obtained
by using Ampere’s law and Ohm’s law in Faraday’s
law to eliminate E and J:

∂tB +∇×E = 0

∂tB +∇× (B× v + E′) = 0

∂tB +∇ · (vB−Bv) = −∇× (E′) = ∇ · (ε ·E′).

Note: −∇× (ηJ) = −∇× (η 1
µ0
∇×B)

= ∇ · (η 1
µ0

(∇BT −∇B)).

2.2 Mass balance.

∂tρ+∇ · (ρv) = 0.

2.3 Momentum balance.

For MHD we ignore second-order terms in the electric
field. This means that we discard the momentum of
the electromagnetic field and retain only the magnetic
terms in the electromagnetic stress tensor.

So the electromagnetic stress tensor is:
T = 1

µ0
(BB− 1

2B
2δ)

To see that we can discard the momentum of the elec-
tromagnetic field:

∂t(E×B) = (∂tE)×B + E× (∂tB)
= (∂tE)×B−E×∇×E u 0

Decompose the stress tensor into its diagonal compo-
nent (pressure) and its traceless component (viscous
stress): τ = pδ + σ.

Now substitute into the general momentum balance
δ̄t(ρv) + ∂t(ε0E×B) = ∇ · τ +∇ · T .

Splitting the stress tensor into hyperbolic (pressure)
and parabolic (viscous stress tensor) parts, we express
conservation of momentum as:

∂tρv +∇ ·
(
ρvv + (p+ 1

2µ0
B2)δ − 1

µ0
BB

)
= ∇ · σ

2.4 Energy balance.

Using Ohm’s law and Ampere’s law we can express the
Poynting vector in terms of the magnetic field:

E×B = (E′ + B× v)×B
= E′ ×B + (B2v −BB · v)

Again we discard the electric field term from the elec-
tromagnetic energy since it is second-order:
Ef = 1

2µ0
B2.

Invoke the relations
τ = −pδ + σ and
q = −κ∇T .

Substituting into the general energy balance,
δ̄tE + ∂tEf +∇ · ( 1

µ0
E×B) = ∇ · (τ · v)−∇ · q,

δ̄tE + 1
2µ0

∂tB
2 +∇ · 1

µ0
(B2v−BB · v) +∇ ·

(
E′ ×B

)
= ∇ · (σ · v)−∇ · (pv) +∇ · (κ∇T )

Thus the energy balance with electric field expurgated
and hyperbolic and parabolic terms separated is:

∂tẼ +∇ ·
(

(Ẽ + p+ 1
2µ0

B2)v − 1
µ0

BB · v
)

=

∇ · (σ · v) +∇ ·
(
κ∇T −E′ ×B

)
where Ẽ = E t + 1

2ρv
2 + 1

2µ0
B2 is the total energy.

Assuming the ideal gas law, E t = p
γ−1 . Note that:

−ηJ×B u −η 1
µ0

(∇×B)×B = η 1
µ0

(∇(12B
2))−B·∇B

= η 1
µ0
∇ · (12B

2δ −B ·B).

2.5 Full MHD system.

Thus, the full system of viscous, resistive MHD equa-
tions for an ideal conducting gas is

∂

∂t


ρ
ρv

Ẽ
B

+∇ ·


ρv

ρvv + p̃ δ − 1
µ0

BB

v
(
Ẽ + p̃

)
− 1

µ0
BB · v

vB−Bv


︸ ︷︷ ︸

hyperbolic flux

= ∇ ·


0
σ

σ · v +
(
κ∇T −E′ ×B

)
ε ·E′


︸ ︷︷ ︸

parabolic flux

and ∇ ·B = 0 ,

where ρ is the mass density, v is the fluid velocity
field, Ẽ := E + 1

2µ0
B2 is the total energy (gas-dynamic

energy plus magnetic energy), B is the magnetic field,
and p̃ := p+ 1

2µ0
B2 is the total pressure (gas-dynamic

pressure plus magnetic pressure). The gas-dynamic
pressure is p = (γ − 1)(E − 1

2ρv
2), where γ is the ratio

of specific heats.
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3 Two-fluid plasma equations.

The two-fluid plasma equations consist of 16 evolution
equations which specify balance laws for electromag-
netic field and the mass, momentum, and energy of
each species of the plasma. They model the plasma as
a negatively charged fluid of electrons and a positively
charged fluid of ions which occupy the same space and
interact with the electromagnetic field. In the colli-
sionless case, it is assumed that the two fluids pass
through one another freely with no direct interaction,
and therefore influence one another only by means of
their mutual interaction with the electromagnetic field.
In more general models the two fluids may exert a drag
force on one another.

Our general two-fluid model consists simply of gas dy-
namics for each of the two fluids, coupled to one an-
other by drag force and heat transfer and coupled to
Maxwell’s equations by means of source terms consist-
ing of the Lorentz force, the charge density, and the
current and displacement currents.

The 10 gas dynamics equations in generality are:

∂t

 ρs
ρsvs
Es

+∇ ·

 ρsvs
ρsvsvs
Esvs


︸ ︷︷ ︸
advection

= ∇ ·

 0
τ
s

τ
s
· vs − qs



+

 0
Rs

Rs · vs +Qs


︸ ︷︷ ︸

interactive source

+

 0
σsE + Js ×B

Js ·E


︸ ︷︷ ︸

electromagnetic source

,

where s is the species index (i for ion, e for electron),
ρ denotes mass density, v is the fluid velocity, E is the
gas-dynamic energy, τ is the stress, q is the heat flux,
σ is the charge density, J is the current, Rs is the drag
force on species s from the other species, and Qs is the
heat transfer to species s from the other species.

Maxwell’s 6 evolution equations with constraints are:

∂t

[
B
E

]
+∇×

[
E
−c2B

]
=

[
0
− 1
ε0

J

]
and ∇ ·

[
B
E

]
=

[
0
1
ε0
σ

]
,

where E and B are the electric and magnetic fields,
σ =

∑
s σs =

∑
s
qs
ms
ρs is the charge density, and J =∑

s Js =
∑

s
qs
ms
ρsvs is the current density.

We remark here that Maxwell’s evolution equations
can be viewed as a conservation law for B and a bal-
ance law for E (with current providing a source term),
because a curl, like any spatial differential operator,
can be viewed as a divergence: ∇ × v = ∂jeiεijkvk =
−∇ · (ε · v).

The 10 gas dynamics equations expressed with
hyperbolic and parabolic flux terms and with in-
teractive and electromagnetic source terms are:

∂t

 ρs
ρsvs
Es

+∇ ·

 ρsvs
ρsvsvs + ps δ
vs
(
Es + ps

)


︸ ︷︷ ︸
hyperbolic flux

= ∇ ·

 0
σ
s

σ
s
· vs + κs∇Ts


︸ ︷︷ ︸

parabolic flux

+

 0
Rs

Rs · vs +Qs


︸ ︷︷ ︸

interactive source

+

 0
qs
ms
ρs(E + vs ×B)
qs
ms
ρsvs ·E


︸ ︷︷ ︸
electromagnetic source

where qs
ms

denotes charge-to-mass ratio, p is the pres-
sure, σ is the viscous stress, T is the temperature,
and κ is the heat conductivity.

Typically Rs is taken to be proportional to the density
of each species and the difference in velocity between
the two species. Qs is similarly proportional to the
density of each species and the difference in tempera-
ture between them.

In the collisionless model, the interactive source is as-
sumed to be zero. In the ideal model, the parabolic
flux is also assumed to be zero. In the absence of
shocks I think that we can then replace energy conser-
vation with entropy conservation:
dstSs = 0, where Ss := ln(psρ

−γ
s )

3.1 One-fluid from two-fluid.

To obtain the full one-fluid model from the two-fluid
model, we simply sum the gas-dynamics balance laws
over all species for each conserved variable.
(So let ρ :=

∑
s ρs, ρv :=

∑
s ρvs, E :=

∑
s Es, τ :=∑

s τ s, q :=
∑

s qs, and J :=
∑

s Js.)

Interactive source terms will cancel, since they sim-
ply serve to exchange momentum and energy between
species. The species index s will effectively disappear,
except for quadratic deviations from the mean aris-
ing from the nonlinear term labeled “advection”; these
nonlinearities can be absorbed into the higher-order
moments (the stress tensor in the case of momentum
conservation; the heat flux in the case of energy con-
servation). The full one-fluid model is only an approxi-
mation to the two-fluid model, because it assumes that
nice constitutive relations for these higher-order mo-
ments still hold after absorbing these nonlinearities.
[For details see my summary, “A book-keeping deriva-
tion of 1-fluid equations from multi-fluid plasma equa-
tions”.]
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A Derivation of basic laws.

A.1 Conservation of momentum.

The electromagnetic force on a particle of charge q
and velocity v is given by: q(E + v×B). This means
that the electromagnetic force density on a continuum
of net charge density σ and net current J is given by
F = σE + J × B. (To see this, let n be the number
density and v be the velocity of a particular species
of charge q. Then the charge density of this species is
σ = nq and the current of this species is the charge
flux, J = σv = nqv.)

Conservation of momentum tells us that:

δ̄t(ρv) = F +∇ · τ

We wish to write the force of the electromagnetic field
on the particles as the time derivative of some func-
tion of electromagnetic field (which we will regard as
electromagnetic momentum) plus a spatial derivative
of another function of electromagnetic field (which we
will regard as flux of electromagnetic momentum).

To express the force purely in terms of electromagnetic
field quantities, use the nonhomogeneous Maxwell
equations to eliminate the charge density and the cur-
rent: F = ε0(∇ ·E)E + ( 1

µ0
∇×B− ε0∂tE)×B.

Then use parts to get a time derivative of a single
quantity. −(∂tE)×B = −∂t(E×B) + E× ∂tB.

The quantity ε0E×B = 1
c2

S, where S is the Poynting
vector, is what we identify as the momentum of the
field.

Now we’ll use the inhomogeneous equations to make
everything else look like the spatial derivative of a sin-
gle quantity. Faraday’s law gives E × ∂tB = −E ×
(∇ × E). Now we try to write everything except the
time derivative as the divergence of some tensor. For
the electric field terms we get:

(∇ ·E)E−E× (∇×E)
= (∇ ·E)E− (∇E) ·E + E · (∇E)
= ∇ · (EE)−∇(12E

2)

For the magnetic field terms we get (since ∇ ·B = 0):
(∇×B)×B = B ·∇B−∇(12B

2) = ∇·(BB− 1
2B

2δ).

So the force of the field on the charges is
F = −∂t( 1

c2
S) +∇ · T ,

where T := ε0(EE− 1
2E

2δ) + 1
µ0

(BB− 1
2B

2δ)
is the Maxwell stress tensor.

δ̄t(ρv) + ∂t(
1
c2

S) = ∇ · T +∇ · τ

A.2 Conservation of angular momentum.

To get conservation of angular momentum, simply
cross momentum conservation with the spatial posi-
tion r. Use that for any symmetric tensor A, (∇·A)×
r = ∇ · (A× r). Get

δ̄t(ρv × r) + ∂t(
1
c2

S× r) = ∇ · (T × r) +∇ · (τ × r)

Evidently 1
c2

S×r = ε0(E×B)×r = ε0(BE−EB) ·r is
the electromagnetic angular momentum. It is exper-
imentally observed that plasmas in tokamaks sponta-
neously rotate (both toroidally and poloidally); appar-
ently gas-dynamic angular momentum is balanced by
electromagnetic angular momentum in this case.

A.3 Conservation of energy.

The power (rate of work) of an electromagnetic field
on a moving charged particle is (force) · (velocity) =
q(E + v×B) · v = qv ·E. This means that the power
density on a net current J is given by J · E. (To see
this, let n be the number density and v be the velocity
of a particular species of charge q. Then the current
of this species is the charge flux, J = nqv.)

Conservation of energy tells us that:

δ̄tE = J ·E +∇ · (τ · v)−∇ · q

We wish to write the work of the electromagnetic field
on the particles as the time derivative of some func-
tion of electromagnetic field (which we will regard as
electromagnetic momentum) plus a spatial derivative
of another function of electromagnetic field (which we
will regard as flux of electromagnetic energy).

To express the work purely in terms of electromag-
netic field quantities, use the completed Ampere’s law
to eliminate the current, and then use parts and Fara-
day’s law to separate out a time and spatial derivative:

−J ·E = ε0(∂tE− c2∇×B) ·E
= ε0(∂t(

1
2E

2)− c2E · ∇ ×B)
= ε0∂t(

1
2E

2)− 1
µ0

(B · ∇ ×E−∇ · (E×B))

= ε0∂t(
1
2E

2) + 1
µ0
∂t(

1
2B

2) + 1
µ0
∇ · (E×B)

= ∂t
(
ε0(

1

2
E2) +

1

µ0
(
1

2
B2)︸ ︷︷ ︸

Call Ef

)
+∇ ·

( 1

µ0
E×B︸ ︷︷ ︸

Call S

)

δ̄tE + ∂tEf +∇ · S = ∇ · (τ · v)−∇ · q

B The equations of electromag-
netism.

The fundamental equations of electromagnetism are
Maxwell’s equations of electromagnetic fields and the
Lorentz force law.
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B.1 Lorentz force law.

The force F felt by a particle of charge q moving in
the presence of an electric field E and a magnetic field
B with velocity v is given by the Lorentz force law:

F = q(E + v ×B)

B.2 Maxwell’s equations.

Maxwell’s equations constrain and govern the evolu-
tion of the electric field E and the magnetic field B.

B.2.1 Differential form.

In their differential form, Maxwell’s equations are most
commonly expressed as:

• ∇ ·B = 0 (no monopoles)
• ∇ ·E = σ

ε0
(Gauss’s law)

• ∇ ×E = −∂tB (Faraday’s law)
• ∇ ×B = µ0(J + ε0∂tE) (extended Ampere’s law)

The last two equations can be read as evolution equa-
tions for B and E. The first two equations are con-
straints that continue to hold if they hold at some ini-
tial time. Taking the curl of the evolution equations
and setting the current to 0 show that the speed of
light c satisfies c2µ0ε0 = 1.

B.2.2 Integral form of Maxwell’s equations.

To see their physical meaning, we put Maxwell’s equa-
tions in integral form.

Let u be a vector field, let V be a simple region of
volume, let ∂V be the boundary of this volume, let
S be a simple oriented surface in space, and ∂S be
the boundary of this surface. Let n represent the out-
ward normal or a normal to an oriented surface, and
let τ represent the oriented tangent to the boundary
of an oriented surface. We can use the following ver-
sions of the fundamental theorem of calculus to rewrite
Maxwell’s equations in integral form:

•
∫
V ∇ · u =

∮
∂V n · u (Divergence theorem)

•
∫
S n · ∇ × u =

∮
∂S τ · u (Stokes’ theorem)

We can put Maxwell’s equations in their standard in-
tegral form by integrating the divergence constraints
over an arbitrary volume and applying Gauss’s law,
and taking a flux integral (

∫
S n·) of the evolution equa-

tions over an arbitrary oriented surface S and applying
Stoke’s law. This gives:

•
∮
∂V n ·B = 0 (no monopoles)

•
∮
∂V n ·E =

∫
V

σ
ε0

(Gauss’s law)

•
∮
∂S τ ·E = − d

dt

∫
S n ·B (Faraday’s law)

•
∮
∂S τ ·B =

∫
S n · µ0(J + ε0∂tE) (extended Ampere)

So absence of monopoles says that the net flux of the
magnetic field out of any volume is zero, Gauss’s law
says that the flux of the electric field out of any volume
is proportional to the total charge inside, Faraday’s
law says that the circulation of the electric field around
a loop is minus the rate of change of the flux of the
magnetic field through the loop, and Ampere’s law
says that the circulation of the magnetic field around
a loop is proportional to the flux of the current plus
displacement current through the loop.

B.2.3 Balance law form of Maxwell’s equa-
tions.

We can write the evolution equations as balance laws
with current as a source term for electromagnetic field:

∂t

[
B
E

]
+∇×

[
E
−c2B

]
=

[
0
− 1
ε0

J

]
These laws of electromagnetism, along with the addi-
tional fundamental laws of conservation of mass, mo-
mentum balance (net force equals rate of change of mo-
mentum), and Newton’s inverse square law for grav-
itation, constitute the fundamental laws of classical
mechanics.

B.3 Taking Fundamental Constants to be
Unity.

You can take all fundamental constants to be unity by
writing the basic equations in the following form:

∂(ct)

[
(cB)
E

]
+∇×

[
E

−(cB)

]
=

[
0

−
(

J
cε0

)]
and ∇ ·

[
(cB)
E

]
=

[
0(
σ
ε0

)] .
The electromagnetic field produces a Lorentz force
which (if it happens to stand alone) results in a rate
of change of momentum:(ρc2

ε0

) d

d(tc)

(v

c

)
=
(F

ε0

)
=
( σ
ε0

)
E +

( J

cε0

)
×
(
cB
)
.

Now replace each parenthesized quantity with the vari-
able it contains renamed with a tilde and you can pro-
ceed as if all the fundamental constants are unity.
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C Ohm’s law.

Ohm’s law specifies the electric field E′ := E + v ×B
in the reference frame of the fluid. (In the approx-
imation of Galilean relativity, the transformation of
electromagnetic field from the fixed reference frame
to a reference frame moving at velocity v is given by
B → B, E → (E + v × B.)) Assuming quasineu-
trality and vanishing electron mass implies that the
electron velocity in the reference frame of the ions is
we := −J/(en). Then conservation of momentum for
electrons yields the generalized Ohm’s law:

E′ = ηJ + J
en ×B− ∇peen + me

e2n
[∂tJ +∇ · (Jv + vJ− JJ

ne )]

Note that E′− J
en×B is the electric field in the reference

frame of the electrons. The final term represents the
inertia.
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