## General Moment Evolution

by E. Alec Johnson, June 2009

## 1 Boltzmann equation

Recall the Boltzmann equation,

$$
\partial_{t} f_{s}+\nabla \cdot\left(\mathbf{v} f_{s}\right)+\nabla_{\widetilde{\mathbf{v}}} \cdot\left(\mathbf{a} f_{s}\right)=C_{s},
$$

where $\nabla \cdot:=\nabla_{\mathbf{x}} \cdot, \mathbf{x}$ is position, $\mathbf{v}$ is velocity, $\widetilde{\mathbf{v}}=\gamma \mathbf{v}$ is proper velocity, where $\gamma:=\left(1+(\mathbf{v} / c)^{2}\right)^{-1 / 2}$, and $\mathbf{a}=\frac{q_{s}}{m_{s}}(\mathbf{E}+\mathbf{v} \times \mathbf{B})$ is the rate of change of proper velocity with respect to time. (Ignore the blue text and wide tildes if you do not care about relativity.) Drop the subscript $s$.

## 2 Evolution of "conserved" moments

Let $\chi(\mathbf{v})$ be a generic moment. Multiply by $\chi$ and integrate by parts. Get the generic velocity moment evolution equation

$$
\partial_{t}(\rho\langle\chi\rangle)+\nabla \cdot(\rho\langle\mathbf{v} \chi\rangle)=\rho\left\langle\mathbf{a} \cdot \nabla_{\widetilde{\mathbf{v}}} \chi\right\rangle+\int_{\widetilde{\mathbf{v}}} \chi C,
$$

where for any moment $\chi$ the statistical average $\langle\chi\rangle$ is defined as the average over velocity space weighted by the distribution $f:\langle\chi\rangle:=\frac{\int_{\tilde{\widetilde{ }}} \chi f}{\int_{\tilde{\mathbf{v}}} f}$, i.e. $\rho\langle\chi\rangle:=\int_{\tilde{\mathbf{v}}} \chi f .{ }^{1}$ In this document products are by default tensor products and powers are by default tensor powers. Now choose $\chi^{[n]}=\mathbf{v}^{n}:=\prod_{i=1}^{n} \mathbf{v}$. Let Sym be the map which takes a tensor and returns its symmetric part (obtained by summing over all permutations of the tensor subscripts and dividing by $n$-factorial, where $n$ is the order of the tensor). But $\mathbf{a} \cdot \nabla_{\widetilde{\mathbf{v}}} \mathbf{v}^{n}=\sum_{j} \mathbf{a}_{j} \partial_{v_{j}} \operatorname{Sym}\left(\mathbf{v}^{n}\right)=n \operatorname{Sym}\left(\mathbf{a v}^{n-1}\right)=\frac{q}{m} n \operatorname{Sym}\left(\mathbf{v}^{n-1} \mathbf{E}+\mathbf{v}^{n} \times \mathbf{B}\right)$ (which is simply a sum over all distinguishable permutations of subscripts).

Define the generalized energy tensor $E^{[n]}:=\int_{\mathbf{v}} f \mathbf{v}^{n}=\rho\left\langle\mathbf{v}^{n}\right\rangle$. Get the generalized conservative moment evolution equation

$$
\begin{equation*}
\partial_{t} E^{[n]}+\nabla \cdot E^{[n+1]}=\frac{q}{m} n \operatorname{Sym}\left(E^{[n-1]} \mathbf{E}+E^{[n]} \times \mathbf{B}\right)+\int_{\widetilde{\mathbf{v}}} \mathbf{v}^{n} C . \tag{2.1}
\end{equation*}
$$

Setting $n=0$ gives conservation of mass, setting $n=1$ gives momentum evolution, and setting $n=2$ gives energy tensor evolution, half of whose trace is energy evolution.

### 2.1 Primitive variables

Equation (2.1) is a coupled infinite system of evolution equations for moments of the Boltzmann equation. To provide finite closure we choose a maximum $n$ and specify $E^{[n+1]}$ in terms of the lower moments. The problem of closure leads one naturally consider primitive variables. The closure relation should be

[^0]invariant under change of inertial reference frame, so we are naturally lead to consider moments of the thermal speed $\mathbf{c}:=\mathbf{v}-\mathbf{u}$, where $\mathbf{u}:=\langle v\rangle$ is the bulk fluid velocity.

For $n \geq 2$ the primitive moments are defined by

$$
P^{[n]}:=\rho\left\langle\mathbf{c}^{n}\right\rangle,
$$

which we will refer to as the $n$th order generalized pressure. For tensor orders 0 and 1 the primitive variables are defined to be $\rho$ and $\mathbf{u}$. The primitive variable corresponding to the scalar energy is the scalar pressure, defined to be one third the trace of $\mathbb{P}:=P^{[2]}$.

To relate primitive and conserved variables we observe that

$$
\begin{aligned}
& v^{n}=\operatorname{Sym}\left[v^{n}\right]=\operatorname{Sym}\left[(u+c)^{n}\right]=\operatorname{Sym} \sum_{j=0}^{n}\binom{n}{j} u^{j} c^{n-j}, \\
& c^{n}=\operatorname{Sym}\left[c^{n}\right]=\operatorname{Sym}\left[(v-u)^{n}\right]=\operatorname{Sym} \sum_{j=0}^{n}(-1)^{j}\binom{n}{j} u^{j} v^{n-j} .
\end{aligned}
$$

Primitive and conserved variables are thus related by

$$
\begin{aligned}
& E^{[n]}=\operatorname{Sym} \sum_{j=0}^{n}\binom{n}{j} \mathbf{u}^{j} P^{[n-j]}=P^{[n]}+\operatorname{Sym} \sum_{j=1}^{n-2}\binom{n}{j} \mathbf{u}^{j} P^{[n-j]}+\rho \mathbf{u}^{n}, \\
& P^{[n]}=\operatorname{Sym} \sum_{j=0}^{n}(-1)^{j}\binom{n}{j} \mathbf{u}^{j} E^{[n-j]}=E^{[n]}+\operatorname{Sym} \sum_{j=1}^{n-2}(-1)^{j}\binom{n}{j} \mathbf{u}^{j} E^{[n-j]}+(-1)^{n}(1-n) \rho \mathbf{u}^{n} .
\end{aligned}
$$

Observe that for $n=1$ and half the trace for $n=2$ these formulas reduce to the familiar relations

$$
\begin{aligned}
\mathbf{M}:=\rho \mathbf{u}, & \mathcal{E}=\frac{3}{2} p+\frac{1}{2} \rho u^{2}, \\
\mathbf{u}=\mathbf{M} / \rho, & p=\frac{2}{3} \mathcal{E}-\frac{1}{3} \rho u^{2},
\end{aligned}
$$

where $\mathbf{M}$ is the momentum, $\mathcal{E}:=\frac{1}{2} \rho\left\langle v^{2}\right\rangle$ is the energy, and $p:=\frac{1}{3} \rho\left\langle c^{2}\right\rangle$ is the pressure. More generally, we have:

$$
\begin{array}{ll}
E^{[0]}=\rho, & P^{[0]}=\rho, \\
E^{[1]}=\rho \mathbf{u}, & P^{[1]}=\mathbf{0}, \\
E^{[2]}=\rho \mathbf{u}^{2}+P^{[2]}, & P^{[2]}=E^{[2]}-\rho \mathbf{u}^{2}, \\
E^{[3]}=\rho \mathbf{u}^{3}+\operatorname{Sym}\left(3 \mathbf{u} P^{[2]}\right)+P^{[3]}, & P^{[3]}=E^{[3]}-\operatorname{Sym}\left(3 \mathbf{u} E^{[2]}\right)+2 \rho \mathbf{u}^{3}, \\
E^{[4]}=\rho \mathbf{u}^{4}+\operatorname{Sym}\left(6 \mathbf{u}^{2} P^{[2]}+4 \mathbf{u} P^{[3]}\right)+P^{[4]}, & P^{[4]}=E^{[4]}-\operatorname{Sym}\left(4 \mathbf{u} E^{[3]}-6 \mathbf{u}^{2} E^{[2]}\right)-3 \rho \mathbf{u}^{4}, \\
E^{[5]}=\rho \mathbf{u}^{5}+\operatorname{Sym}\left(10 \mathbf{u}^{3} P^{[2]}+10 \mathbf{u}^{2} P^{[3]}+5 \mathbf{u} P^{[4]}\right)+P^{[5]}, & P^{[5]}=E^{[5]}-\operatorname{Sym}\left(5 \mathbf{u} E^{[4]}-10 \mathbf{u}^{2} E^{[3]}+10 \mathbf{u}^{3} E^{[2]}\right)+4 \rho \mathbf{u}^{5}
\end{array}
$$

### 2.2 Temperature

The temperature is defined to be twice the average particle energy in a given direction (averaged over all three directions) in the reference frame of bulk flow: $T:=\frac{1}{3} m\left\langle c^{2}\right\rangle=\frac{p}{n}$, where $n:=\rho / m$ is the number
density of the species. By analogy, we define the generalized temperature tensor

$$
T^{[n]}:=P^{[n]} / n=m\left\langle\mathbf{c}^{n}\right\rangle .
$$

Temperature is useful in positing closure relations; for example, one may posit that the heat flux is an isotropic linear function of the temperature gradient.

### 2.3 Closure.

To close a system of moment evolution equations up to $(n-1)$ th order, we need to specify $E^{[n]}$ in terms of lower-order moments. We do so by positing a constitutive relation for the "heat flux tensor" $P^{[n]}$. Probably the simplest generic closure is truncation, i.e., assuming $P^{[n]}=0$. Then (for $n \geq 2$ )

$$
E^{[n]}=E^{[n]}-P^{[n]}=-\operatorname{Sym} \sum_{j=1}^{n-2}(-1)^{j}\binom{n}{j} \mathbf{u}^{j} E^{[n-j]}+(-1)^{n}(n-1) \rho \mathbf{u}^{n}
$$

Specifically, we can use one of the closure approximations

$$
\begin{array}{lr}
E^{[2]}=\rho \mathbf{u}^{2} & \text { (cold plasma) }, \\
E^{[3]}=\operatorname{Sym}\left(3 \mathbf{u} E^{[2]}\right)-2 \rho \mathbf{u}^{3} & (10 \text {-moment closure) } \\
E^{[4]}=\operatorname{Sym}\left(4 \mathbf{u} E^{[3]}-6 \mathbf{u}^{2} E^{[2]}\right)+3 \rho \mathbf{u}^{4} & (20 \text {-moment closure) }) \\
E^{[5]}=\operatorname{Sym}\left(5 \mathbf{u} E^{[4]}-10 \mathbf{u}^{2} E^{[3]}+10 \mathbf{u}^{3} E^{[2]}\right)-4 \rho \mathbf{u}^{5} & (35 \text {-moment closure)) }
\end{array}
$$

to truncate the moment hierarchy

$$
\begin{aligned}
\partial_{t} \rho+\nabla \cdot \mathbf{M} & =0, \\
\partial_{t} \mathbf{M}+\nabla \cdot E^{[2]} & =\frac{q}{m} \operatorname{Sym}(\rho \mathbf{E}+\mathbf{M} \times \mathbf{B}), \\
\partial_{t} E^{[2]}+\nabla \cdot E^{[3]} & =2 \frac{q}{m} \operatorname{Sym}\left(\mathbf{M E}+E^{[2]} \times \mathbf{B}\right), \\
\partial_{t} E^{[3]}+\nabla \cdot E^{[4]} & =3 \frac{q}{m} \operatorname{Sym}\left(E^{[2]} \mathbf{E}+E^{[3]} \times \mathbf{B}\right) . \\
\partial_{t} E^{[4]}+\nabla \cdot E^{[5]} & =4 \frac{q}{m} \operatorname{Sym}\left(E^{[3]} \mathbf{E}+E^{[4]} \times \mathbf{B}\right) .
\end{aligned}
$$

A prohibitive problem with truncation closure is that it does not seem to give a hyperbolic system in case the highest moment has order greater than 2 . The derivative of flux with respect to state has non-real eigenvalues, resulting in unbounded growth, i.e., an ill-posed system.

### 2.4 Contracted moments

In three spatial dimensions the number of independent entries in a totally symmetric $n$th order tensor in three spacial dimensions is $\binom{n+2}{2}=\frac{1}{2}(n+1)(n+2)$ and the number of moments up to $n$th order is $\binom{n+3}{3}=$
$\frac{1}{6}(n+1)(n+2)(n+3)$. (In four dimensions the number of independent entries in a totally symmetric $n$th order tensor is $\binom{n+3}{3}$ and the number of moments up to $n$th order is $\binom{n+4}{4}=\frac{1}{4!}(n+1)(n+2)(n+3)(n+4)$.)

| $n$ | $\binom{n+2}{2}$ | $\binom{n+3}{3}$ | $\binom{n+4}{4}$ |
| :--- | :--- | :--- | :--- |
| 0 | 1 | 1 | 1 |
| 1 | 3 | 4 | 5 |
| 2 | 6 | 10 | 15 |
| 3 | 10 | 20 | 35 |
| 4 | 15 | 35 | 70 |

To avoid the expense of evolving a high number of moments yet still retain higher-order information, one can replace the evolution equation for a higher moment with a contracted evolution equation for a contracted moment. To contract a tensor you set two indices equal and sum. For example, $\sum_{i} \alpha_{i, i, j}$ represent the contraction of the tensor $\alpha$ over its first two indices. Observe that the expectation of any power of particle velocity is a totally symmetric tensor, that any contraction of a totally symmetric tensor is a totally symmetric tensor, and that for a totally symmetric tensor it is irrelevant over which two indices you contract. We are thus motivated to define the trace $\operatorname{tr}$ of a totally symmetric tensor $\alpha$ to be its contraction over (any) two of its indices: $\operatorname{tr} \alpha:=\mathbb{I}: \alpha=\alpha: \mathbb{I}$, where $\mathbb{I}$ is the identity tensor.

For example, the 14 -moment system contracts the evolution equation for the 10 independent moments $\rho\langle\mathbf{v v v}\rangle=E^{[3]}$ to get an evolution equation for the 3 moments $\rho\langle\mathbf{v v} \cdot \mathbf{v}\rangle=: \operatorname{tr} E^{[3]}$, and twice contracts the evolution equation for the 15 independent moments $\rho\langle\mathbf{v v v v}\rangle=E^{[4]}$ to get an evolution equation for the scalar $\rho\langle\mathbf{v} \cdot \mathbf{v v} \cdot \mathbf{v}\rangle=: \operatorname{tr} \operatorname{tr} E^{[4]}$.

| no. moments | evolved quantities |  |  |  | truncation |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 5 | $\rho$, | $\rho \mathbf{u}$, | $\operatorname{tr} E^{[2]}$ | $P^{[3]}=0$ |  |  |
|  | 1 | +3 | +1 |  | $P^{[3]}=0$ |  |
| 10 | $\rho$, | $\rho \mathbf{u}$, | $E^{[2]}$ |  |  |  |
|  | 1 | +3 | +6 |  |  |  |
| 14 | $\rho$, | $\rho \mathbf{u}$, | $E^{[2]}$, | $\operatorname{tr} E^{[3]}$, | $\operatorname{tr} \operatorname{tr} E^{[4]}$ | $P^{[5]}=0$ |
|  | 1 | +3 | +6 | +3 | +1 |  |
| 21 | $\rho$, | $\rho \mathbf{u}$, | $E^{[2]}$, | $E^{[3]}$, | $\operatorname{tr} \operatorname{tr} E^{[4]}$ | $P^{[5]}=0$ |
|  | 1 | +3 | +6 | +10 | +1 |  |
| 26 | $\rho$, | $\rho \mathbf{u}$, | $E^{[2]}$, | $E^{[3]}$, | $\operatorname{tr} E^{[4]}$ | $P^{[5]}=0$ |
|  | 1 | +3 | +6 | +10 | +6 |  |
| 35 | $\rho$, | $\rho \mathbf{u}$, | $E^{[2]}$, | $E^{[3]}$, | $E^{[4]}$ | $P^{[5]}=0$ |
|  | 1 | +3 | +6 | +10 | +15 |  |

Replacing a moment with a contracted moment poses a closure problem. To provide for closure one posits that the uncontracted moment $P^{[n]}$ is a linear isotropic function of its contracted moment.

In the case of the 5 -moment system, positing that the pressure tensor is an isotropic linear function of a scalar gives the constitutive relation

$$
\begin{equation*}
P^{[2]}=\mathbb{I} p=\mathbb{I} \operatorname{tr} P^{[2]} / 3 . \tag{2.3}
\end{equation*}
$$

In the case of the 14 -moment system, this leads to the constitutive relations

$$
P_{i j k}^{[3]}=\frac{1}{5} \sum_{m}\left(\delta_{i j} P_{k m m}^{[3]}+\delta_{i k} P_{j m m}^{[3]}+\delta_{j k} P_{i m m}^{[3]}\right)=\frac{3}{5} \operatorname{Sym}\left(\mathbb{I} \otimes \operatorname{tr} P^{[3]}\right)
$$

and

$$
\begin{equation*}
P_{i j k l}^{[4]}=\frac{1}{15} \sum_{m} \sum_{n} P_{m m n n}^{[4]}\left(\delta_{i j} \delta_{k l}+\delta_{i k} \delta_{j l}+\delta_{j k} \delta_{i l}\right)=\frac{3}{15} \operatorname{tr} \operatorname{tr} P^{[4]} \operatorname{Sym}(\mathbb{I} \otimes \mathbb{I}), \tag{2.4}
\end{equation*}
$$

and in the case of the 26 -moment system one gets the constitutive relation [NEED TO FINISH THIS]
where $\mathbb{I}$ is the identity tensor, $\delta_{i j}$ denotes Kronecker delta, and Sym is the map which takes a tensor and returns its symmetric part (obtained e.g. by averaging over all permutations of subscripts). The truncation closure remains $P^{[5]}=0$.

### 2.5 10-moment system

In conserved variables the ten-moment system is

$$
\begin{aligned}
\partial_{t} \rho+\nabla \cdot \mathbf{M} & =0, \\
\partial_{t} \mathbf{M}+\nabla \cdot E^{[2]} & =\frac{q}{m} \operatorname{Sym}(\rho \mathbf{E}+\mathbf{M} \times \mathbf{B}), \\
\partial_{t} E^{[2]}+\nabla \cdot E^{[3]} & =2 \frac{q}{m} \operatorname{Sym}\left(\mathbf{M E}+E^{[2]} \times \mathbf{B}\right), \\
E^{[3]} & =\operatorname{Sym}\left(3 \mathbf{u} E^{[2]}\right)-2 \rho \mathbf{u}^{3} .
\end{aligned}
$$

That is,

$$
\begin{aligned}
& \partial_{t} \rho+\nabla \cdot(\rho \mathbf{u})=0, \\
& \partial_{t}(\rho \mathbf{u})+\nabla \cdot(\rho \mathbf{u u}+\mathbb{P})=\frac{q}{m} \rho(\mathbf{E}+\mathbf{u} \times \mathbf{B}), \\
& \partial_{t}(\rho \mathbf{u u}+\mathbb{P})+\nabla \cdot(\rho \mathbf{u u u}+3 \operatorname{Sym}(\mathbf{u} \mathbb{P}))=\frac{q}{m} 2 \operatorname{Sym}(\rho \mathbf{u E}+(\mathbb{P}+\rho \mathbf{u u}) \times \mathbf{B}) .
\end{aligned}
$$

### 2.6 5-moment system

The 5 -moment system replaces the evolution equation for the second moment with half its trace and uses the isotropic pressure constitutive relation (2.3),

$$
P^{[2]}=\mathbb{I} p=\mathbb{I} \operatorname{tr} P^{[2]} / 3 .
$$

To obtain a corresponding constitutive relation in conserved variables for $E^{[2]}$, recall that (2.2) expresses $P^{[2]}$ in terms of conserved variables:

$$
\begin{equation*}
P^{[2]}=E^{[2]}-\rho \mathbf{u u} . \tag{2.5}
\end{equation*}
$$

(We remark that taking half the trace of this equation gives the familiar relation $\mathcal{E}=\frac{1}{2} \rho|\mathbf{u}|^{2}+\frac{3}{2} p$, where we define the scalar energy by $\mathcal{E}:=\frac{1}{2} \operatorname{tr} E^{[2]}$.) Substituting this equation and its trace into the primitivevariables constitutive relation gives the conservative-variables constitutive relation

$$
\begin{aligned}
E^{[2]} & =\rho \mathbf{u} \mathbf{u}+\mathbb{I} p \\
& =\rho \mathbf{u} \mathbf{u}+\mathbb{I} \operatorname{tr}\left(\frac{1}{3} E^{[2]}-\frac{1}{3} \rho \mathbf{u u}\right) \\
& =\rho \mathbf{u} \mathbf{u}+\mathbb{I}\left(\frac{2}{3} \mathcal{E}-\frac{1}{3} \rho|\mathbf{u}|^{2}\right) .
\end{aligned}
$$

Substituting this into the momentum evolution equation and taking the trace of the energy equation gives a closed system. Since

$$
\begin{aligned}
\frac{1}{2} \operatorname{tr} E^{[3]} & =\frac{1}{2} \operatorname{tr}\left[\operatorname{Sym}\left(3 \mathbf{u} E^{[2]}\right)-2 \rho \mathbf{u}^{3}\right] \\
& =E^{[2]} \cdot \mathbf{u}+\mathcal{E} \mathbf{u}-\rho|\mathbf{u}|^{2} \mathbf{u} \\
& =\left(\frac{5}{3} \mathcal{E}-\frac{1}{3} \rho|\mathbf{u}|^{2}\right) \mathbf{u}
\end{aligned}
$$

the 5 -moment system in conserved variables is

$$
\begin{aligned}
\partial_{t} \rho+\nabla \cdot \mathbf{M} & =0, \\
\partial_{t} \mathbf{M}+\nabla \cdot \rho \mathbf{u u}+\nabla\left(\frac{2}{3} \mathcal{E}-\frac{1}{3} \rho|\mathbf{u}|^{2}\right) & =\frac{q}{m} \operatorname{Sym}(\rho \mathbf{E}+\mathbf{M} \times \mathbf{B}), \\
\partial_{t} \mathcal{E}+\nabla \cdot\left(\frac{5}{3} \mathcal{E} \mathbf{u}-\frac{1}{3} \rho|\mathbf{u}|^{2} \mathbf{u}\right) & \\
& =\frac{q}{m} \mathbf{M} \cdot \mathbf{E} .
\end{aligned}
$$

### 2.7 21-moment (and 14-moment) closure for $E^{[4]}$

The 21-moment system replaces the evolution equation for $E^{[4]}$ with the trace of its trace.
Equation (2.2) gives $E^{[4]}$ in terms of $P^{[4]}$ and lower conserved moments:

$$
E^{[4]}=P^{[4]}+\operatorname{Sym}\left(4 \mathbf{u} E^{[3]}-6 \mathbf{u}^{2} E^{[2]}\right)+3 \rho \mathbf{u}^{4},
$$

But $P^{[4]}$ is given from twice its trace by (2.4),

$$
P_{i j k l}^{[4]}=\frac{3}{15} \operatorname{tr} \operatorname{tr} P^{[4]} \operatorname{Sym}(\mathbb{I} \otimes \mathbb{I}) .
$$

Twice taking the trace of (2.2) for $P^{[4]}$ in terms of $E^{[4]}$ and substituting into (2.4) gives a constitutive relation for $E^{[4]}$ in terms of its trace and lower moments,

$$
E^{[4]}=\operatorname{tr} \operatorname{tr}\left(E^{[4]}-\operatorname{Sym}\left(4 \mathbf{u} E^{[3]}-6 \mathbf{u}^{2} E^{[2]}\right)-3 \rho \mathbf{u}^{4}\right) \frac{3}{15} \operatorname{Sym}(\mathbb{I} \otimes \mathbb{I})+\operatorname{Sym}\left(4 \mathbf{u} E^{[3]}-6 \mathbf{u}^{2} E^{[2]}\right)+3 \rho \mathbf{u}^{4} .
$$

### 2.8 14-moment closure for $E^{[3]}$

The 14 -moment system is obtained from the 21 -moment system by taking the trace of the evolution equation for $E^{[3]}$. Equation (2.2) gives $E^{[3]}$ in terms of $P^{[3]}$ and lower conserved moments:

$$
E^{[3]}=P^{[3]}+\operatorname{Sym}\left(3 \mathbf{u} E^{[2]}\right)-2 \rho \mathbf{u}^{4},
$$

But $P^{[3]}$ is given from its trace by (2.4),

$$
P_{i j k}^{[3]}=\frac{3}{5} \operatorname{Sym}\left(\mathbb{I} \otimes \operatorname{tr} P^{[3]}\right) .
$$

Taking the trace of (2.2) for $P^{[3]}$ in terms of $E^{[3]}$ and substituting into (2.4) gives a constitutive relation for $E^{[3]}$ in terms of its trace and lower moments:

$$
E^{[3]}=\frac{3}{5} \operatorname{Sym}\left(\mathbb{I} \otimes \operatorname{tr}\left(E^{[3]}-\operatorname{Sym}\left(3 \mathbf{u} E^{[2]}\right)+2 \rho \mathbf{u}^{4}\right)\right)+\operatorname{Sym}\left(3 \mathbf{u} E^{[2]}\right)-2 \rho \mathbf{u}^{4} .
$$

## 3 Evolution of conserved moments

### 3.1 Momentum evolution

Let $\chi=\widetilde{\mathbf{v}}$. Define the average velocity $\mathbf{u}:=\langle\mathbf{v}\rangle$ and the average proper velocity $\widetilde{\mathbf{u}}:=\langle\widetilde{\mathbf{v}}\rangle$. Define the thermal velocity $\mathbf{c}:=\mathbf{v}-\langle\mathbf{v}\rangle$ and the thermal proper velocity $\widetilde{\mathbf{c}}:=\widetilde{\mathbf{v}}-\langle\widetilde{\mathbf{v}}\rangle$. The momentum is $\mathbf{M}:=\rho \widetilde{\mathbf{u}}$. Then the velocity moment evolution becomes the the balance law for momentum,

$$
\partial_{t}(\rho \widetilde{\mathbf{u}})+\nabla \cdot(\rho \mathbf{u} \widetilde{\mathbf{u}}+\widetilde{\mathbb{P}})=\frac{q}{m} \rho(\mathbf{E}+\mathbf{u} \times \mathbf{B})+\int_{\widetilde{\mathbf{v}}} \widetilde{\mathbf{v}} C,
$$

where $\widetilde{\mathbb{P}}:=\rho\langle\mathbf{c} \widetilde{\mathbf{c}}\rangle$ is the pressure tensor.

## 3.2 "Energy" tensor evolution

[From here on results hold only for the non-relativistic domain.] Let $\chi=\mathbf{v v}$. So $\langle\chi\rangle=\mathbf{u u}+\langle\mathbf{c c}\rangle$. Define the pressure tensor $\mathbb{P}:=\rho\langle\mathbf{c c}\rangle$ and the "energy tensor" $\mathbb{E}:=\rho\langle\mathbf{v v}\rangle$ (whose trace is twice the gas-dynamic energy). So $\mathbb{E}:=\rho \mathbf{u u}+\mathbb{P}$, where $\rho \mathbf{u u}$ is the "kinetic energy tensor".

We calculate the terms of the velocity moment evolution equation.

$$
\rho\langle\mathbf{v v v}\rangle=\rho(\mathbf{u u u}+\langle\mathbf{c c u}\rangle+\langle\mathbf{c u c}\rangle+\langle\mathbf{u c c}\rangle+\langle\mathbf{c c c}\rangle)=\rho(\mathbf{u u u}+3 \operatorname{Sym}\langle\mathbf{u c c}\rangle+\langle\mathbf{c c c}\rangle))
$$

and

$$
\begin{aligned}
& \rho\left\langle\mathbf{a} \cdot \nabla_{\mathbf{v}} \cdot \mathbf{v v}\right\rangle=\rho\langle\mathbf{a v}+\mathbf{v a}\rangle=2 \rho \operatorname{Sym}\langle\mathbf{a v}\rangle=2 \rho \operatorname{Sym}(\langle\mathbf{a}\rangle \mathbf{u}+\langle\mathbf{a c}\rangle) \\
& =2 \frac{q}{m} \rho \operatorname{Sym}((\mathbf{E}+\mathbf{u} \times \mathbf{B}) \mathbf{u}+\langle\mathbf{c} \times \mathbf{B} \mathbf{c}\rangle)=2 \frac{q}{m} \operatorname{Sym}(\rho \mathbf{u E}+(\rho \mathbf{u u}+\mathbb{P}) \times \mathbf{B}) .
\end{aligned}
$$

The velocity moment evolution equation becomes the energy tensor evolution equation

$$
\begin{equation*}
\partial_{t}(\rho \mathbf{u u}+\mathbb{P})+\nabla \cdot\left(\rho \mathbf{u u u}+3 \operatorname{Sym}(\mathbf{u} \mathbb{P})+\mathbb{P}^{[3]}\right)=\frac{q}{m} 2 \operatorname{Sym}(\rho \mathbf{u E}+(\mathbb{P}+\rho \mathbf{u u}) \times \mathbf{B})+\int_{\mathbf{v}} \mathbf{v v} C . \tag{3.1}
\end{equation*}
$$

Taking half the trace of this gives the energy evolution equation,

$$
\begin{equation*}
\left.\partial_{t} \mathcal{E}+\nabla \cdot(\mathbf{u} \mathcal{E}+\mathbf{u} \cdot \mathbb{P})+\rho\left\langle\mathbf{c} c^{2}\right\rangle\right)=\frac{q}{m} \rho \mathbf{u} \cdot \mathbf{E}+\int_{\mathbf{v}} C v^{2} / 2 . \tag{3.2}
\end{equation*}
$$

## 4 Evolution of primitive moments

### 4.1 Evolution of generalized moment

Let $\chi(t, \mathbf{x}, \mathbf{v})$ be a generic generalized moment. (We will later impose $\chi(\mathbf{c})$. Note that $\mathbf{c}(t, \mathbf{x}, \mathbf{v})=\mathbf{v}-$ $\mathbf{u}(t, \mathbf{x})$.) Multiply the Boltzmann equation by $\chi$ and integrate by parts. Get the generic moment evolution equation

$$
\partial_{t}(\rho\langle\chi\rangle)+\nabla \cdot(\rho\langle\mathbf{v} \chi\rangle)=\rho\left\langle\left(d_{t}^{\mathbf{v}}+\mathbf{a} \cdot \nabla_{\mathbf{v}}\right) \chi\right\rangle+\int_{\mathbf{v}} \chi C,
$$

where $d_{t}^{\mathbf{v}}:=\partial_{t}+\mathbf{v} \cdot \nabla_{\mathbf{x}}$.

### 4.2 Evolution of generic thermal velocity moment

Impose $\chi(\mathbf{c})$, where $\mathbf{c}=\mathbf{v}-\mathbf{u}(t, \mathbf{x})$. So $\nabla_{\mathbf{v}}=\nabla_{\mathbf{c}}$; also, $d_{t}^{\mathbf{v}} \chi=\left(d_{t}^{\mathbf{v}} \mathbf{c}\right) \cdot \nabla_{\mathbf{c}} \chi=-\left(d_{t}^{\mathbf{v}} \mathbf{u}\right) \cdot \nabla_{\mathbf{c}} \chi$. So the generic moment evolution equation becomes

$$
\partial_{t}(\rho\langle\chi\rangle)+\nabla \cdot(\rho \mathbf{u}\langle\chi\rangle)+\nabla \cdot(\rho\langle\mathbf{c} \chi\rangle)=\rho\left\langle\left(\mathbf{a}-d_{t}^{\mathbf{v}} \mathbf{u}\right) \cdot \nabla_{\mathbf{c}} \chi\right\rangle+\int_{\mathbf{v}} \chi C .
$$

But momentum conservation says that $\langle\mathbf{a}\rangle-d_{t}^{\mathbf{u}} \mathbf{u}=(\nabla \cdot \mathbb{P}-\mathbf{R}) / \rho$, where $\mathbf{R}=\int_{\mathbf{v}} \mathbf{v} C$ is collisional resistance. So $\mathbf{a}-\left(d_{t}^{\mathbf{v}} \mathbf{u}\right)=\mathbf{a}^{\prime}+\langle\mathbf{a}\rangle-d_{t}^{\mathbf{u}} \mathbf{u}-\mathbf{c} \cdot \nabla \mathbf{u}=(\nabla \cdot \mathbb{P}-\mathbf{R}) / \rho+\mathbf{a}^{\prime}-\mathbf{c} \cdot \nabla \mathbf{u}$ where $\mathbf{a}^{\prime}:=\mathbf{a}-\langle\mathbf{a}\rangle=\frac{q}{m} \mathbf{c} \times \mathbf{B}$. So the generic thermal velocity moment evolution equation is

$$
\begin{equation*}
\partial_{t}(\rho\langle\chi\rangle)+\nabla \cdot(\rho \mathbf{u}\langle\chi\rangle)+\nabla \cdot(\rho\langle\mathbf{c} \chi\rangle)=(\nabla \cdot \mathbb{P}-\mathbf{R}) \cdot\left\langle\nabla_{\mathbf{c}} \chi\right\rangle+\rho\left\langle\left(\mathbf{a}^{\prime}-\mathbf{c} \cdot \nabla \mathbf{u}\right) \cdot \nabla_{\mathbf{c}} \chi\right\rangle+\int_{\mathbf{v}} \chi C . \tag{4.1}
\end{equation*}
$$

### 4.3 Evolution of generalized pressure tensor

Choose $\chi=\chi^{[n]}:=\prod_{i=1}^{n} \mathbf{c}$. Then (4.1) gives an evolution equation for the generalized pressure $\mathbb{P}^{[n]}:=$ $\rho\left\langle\chi^{[n]}\right\rangle$. We seek to express the rest of the equation in terms of generalized pressures. Note that $\chi=\operatorname{Sym}(\chi)$ and $\mathbb{P}^{[n]}=\operatorname{Sym}\left(\mathbb{P}^{[n]}\right)$. For a generic $\underline{\alpha}$,

$$
\underline{\alpha} \cdot \nabla_{\mathbf{c}} \chi^{[n]}=\sum_{j} \alpha_{j} \partial_{c_{j}} \operatorname{Sym}\left(\chi^{[n]}\right)=n \operatorname{Sym}\left(\underline{\alpha} \chi^{[n-1]}\right) .
$$

So

$$
\begin{aligned}
\rho\left\langle\left(\mathbf{a}^{\prime}-\mathbf{c} \cdot \nabla \mathbf{u}\right) \cdot \nabla_{\mathbf{c}} \chi^{[n]}\right\rangle & =n \rho \operatorname{Sym}\left\langle\left(\mathbf{a}^{\prime}-\mathbf{c} \cdot \nabla \mathbf{u}\right) \chi^{[n-1]}\right\rangle \\
& =n \operatorname{Sym}\left(\frac{q}{m} \mathbb{P}^{[n]} \times \mathbf{B}-\mathbb{P}^{[n]} \cdot \nabla \mathbf{u}\right)
\end{aligned}
$$

The generic thermal velocity moment evolution equation becomes the following generalized pressure tensor evolution equation,

$$
\delta_{t}\left(\mathbb{P}^{[n]}\right)+\nabla \cdot\left(\mathbb{P}^{[n+1]}\right)+n \operatorname{Sym}\left(\mathbb{P}^{[n-1]}\left(\mathbf{R}-\nabla \cdot \mathbb{P}^{[2]}\right) / \rho+\mathbb{P}^{[n]} \cdot \nabla \mathbf{u}\right)=n \operatorname{Sym}\left(\frac{q}{m} \mathbb{P}^{[n]} \times \mathbf{B}\right)+\int_{\mathbf{c}} C \prod_{i=1}^{n} \mathbf{c}
$$

### 4.4 Evolution of pressure tensor

In case $n=2$, write $\mathbb{P}:=\mathbb{P}^{[2]}=\rho\langle\mathbf{c c}\rangle . \mathbb{P}^{[1]}=\rho\langle\mathbf{c}\rangle=0$. So the pressure tensor evolution equation becomes

$$
\delta_{t}(\mathbb{P})+\nabla \cdot\left(\mathbb{P}^{[3]}\right)+2 \operatorname{Sym}(\mathbb{P} \cdot \nabla \mathbf{u})=2 \operatorname{Sym}\left(\frac{q}{m} \mathbb{P} \times \mathbf{B}\right)+\int_{\mathbf{c}} C \mathbf{c c}
$$

i.e.,

$$
\partial_{t}(\mathbb{P})+\nabla \cdot\left(\mathbb{P}^{[3]}+3 \operatorname{Sym}(\mathbf{u} \mathbb{P})\right)-2 \operatorname{Sym}(\mathbf{u} \nabla \cdot \mathbb{P})=2 \operatorname{Sym}\left(\frac{q}{m} \mathbb{P} \times \mathbf{B}\right)+\int_{\mathbf{c}} C \mathbf{c c} .
$$

Subtracting this from the evolution equation (3.2) for the energy tensor gives a kinetic energy tensor evolution equation,

$$
\partial_{t}(\rho \mathbf{u u})+\nabla \cdot(\rho \mathbf{u u u})+2 \operatorname{Sym}(\mathbf{u} \nabla \cdot \mathbb{P})=\frac{q}{m} 2 \operatorname{Sym}(\rho \mathbf{u E}+(\rho \mathbf{u u}) \times \mathbf{B})+\int_{\mathbf{v}} C(\mathbf{v v}-\mathbf{c c}),
$$

which can be obtained by multiplying the momentum equation $\rho d_{t} \mathbf{u}=\rho \frac{q}{m}(\mathbf{E}+\mathbf{u} \times \mathbf{B})$ by $\mathbf{u}$ and taking the symmetric part. For closure we neglect $\mathbb{P}^{[3]}$ (which is zero if we assume that the pressure tensor is an anisotropic Gaussian) and assume that the collision operator $C$ is zero. This will close the system, giving us the ten-moment collisionless plasma model.

### 4.5 Evolution of pressure

To get an evolution equation for the pressure we take the trace of the evolution equation for the pressure tensor.


[^0]:    ${ }^{1}$ Note that this notational convention is popular with physicists, whereas mathematicians often instead define $\langle\chi\rangle$ to be the simple velocity integral $\int_{\tilde{\mathrm{v}}} \chi f$; I elect to use the notation of the physicists out of a predilection for molar densities.

