General Moment Evolution

by E. Alec Johnson, June 2009

1 Boltzmann equation

Recall the Boltzmann equation,

$$\partial_t f_s + \nabla \cdot (\mathbf{v} f_s) + \nabla_{\widetilde{\mathbf{v}}} \cdot (\mathbf{a} f_s) = C_s,$$

where $\nabla \cdot := \nabla_{\mathbf{x}} \cdot$, \mathbf{x} is position, \mathbf{v} is velocity, $\tilde{\mathbf{v}} = \gamma \mathbf{v}$ is proper velocity, where $\gamma := (1 + (\mathbf{v}/c)^2)^{-1/2}$, and $\mathbf{a} = \frac{q_s}{m_s} (\mathbf{E} + \mathbf{v} \times \mathbf{B})$ is the rate of change of proper velocity with respect to time. (Ignore the blue text and wide tildes if you do not care about relativity.) Drop the subscript s.

2 Evolution of "conserved" moments

Let $\chi(\mathbf{v})$ be a generic moment. Multiply by χ and integrate by parts. Get the generic velocity moment evolution equation

$$\partial_t(\rho\langle\chi\rangle) + \nabla \cdot (\rho\langle\mathbf{v}\chi\rangle) = \rho\langle\mathbf{a}\cdot\nabla_{\widetilde{\mathbf{v}}}\chi\rangle + \int_{\widetilde{\mathbf{v}}}\chi C,$$

where for any moment χ the statistical average $\langle \chi \rangle$ is defined as the average over velocity space weighted by the distribution $f: \langle \chi \rangle := \frac{\int_{\widetilde{\mathbf{v}}} \chi f}{\int_{\widetilde{\mathbf{v}}} f}$, i.e. $\rho \langle \chi \rangle := \int_{\widetilde{\mathbf{v}}} \chi f.^1$ In this document products are by default tensor products and powers are by default tensor powers. Now choose $\chi^{[n]} = \mathbf{v}^n := \prod_{i=1}^n \mathbf{v}$. Let Sym be the map which takes a tensor and returns its symmetric part (obtained by summing over all permutations of the tensor subscripts and dividing by *n*-factorial, where *n* is the order of the tensor). But $\mathbf{a} \cdot \nabla_{\widetilde{\mathbf{v}}} \mathbf{v}^n = \sum_j \mathbf{a}_j \partial_{v_j} \operatorname{Sym}(\mathbf{v}^n) = n \operatorname{Sym}(\mathbf{av}^{n-1}) = \frac{q}{m} n \operatorname{Sym}(\mathbf{v}^{n-1}\mathbf{E} + \mathbf{v}^n \times \mathbf{B})$ (which is simply a sum over all distinguishable permutations of subscripts).

Define the generalized energy tensor $E^{[n]} := \int_{\mathbf{v}} f \mathbf{v}^n = \rho \langle \mathbf{v}^n \rangle$. Get the generalized conservative moment evolution equation

$$\partial_t E^{[n]} + \nabla \cdot E^{[n+1]} = \frac{q}{m} n \operatorname{Sym} \left(E^{[n-1]} \mathbf{E} + E^{[n]} \times \mathbf{B} \right) + \int_{\widetilde{\mathbf{v}}} \mathbf{v}^n C.$$
(2.1)

Setting n = 0 gives conservation of mass, setting n = 1 gives momentum evolution, and setting n = 2 gives energy tensor evolution, half of whose trace is energy evolution.

2.1 Primitive variables

Equation (2.1) is a coupled infinite system of evolution equations for moments of the Boltzmann equation. To provide finite closure we choose a maximum n and specify $E^{[n+1]}$ in terms of the lower moments. The problem of closure leads one naturally consider **primitive variables**. The closure relation should be

¹Note that this notational convention is popular with physicists, whereas mathematicians often instead define $\langle \chi \rangle$ to be the simple velocity integral $\int_{\tilde{\mathbf{v}}} \chi f$; I elect to use the notation of the physicists out of a predilection for molar densities.

invariant under change of inertial reference frame, so we are naturally lead to consider moments of the thermal speed $\mathbf{c} := \mathbf{v} - \mathbf{u}$, where $\mathbf{u} := \langle v \rangle$ is the bulk fluid velocity.

For $n \geq 2$ the primitive moments are defined by

$$P^{[n]} := \rho \langle \mathbf{c}^n \rangle,$$

which we will refer to as the *n*th order generalized pressure. For tensor orders 0 and 1 the primitive variables are defined to be ρ and **u**. The primitive variable corresponding to the scalar energy is the scalar pressure, defined to be one third the trace of $\mathbb{P} := P^{[2]}$.

To relate primitive and conserved variables we observe that

$$v^{n} = \operatorname{Sym}[v^{n}] = \operatorname{Sym}[(u+c)^{n}] = \operatorname{Sym}\sum_{j=0}^{n} \binom{n}{j} u^{j} c^{n-j},$$

$$c^{n} = \operatorname{Sym}[c^{n}] = \operatorname{Sym}[(v-u)^{n}] = \operatorname{Sym}\sum_{j=0}^{n} (-1)^{j} \binom{n}{j} u^{j} v^{n-j}.$$

Primitive and conserved variables are thus related by

$$E^{[n]} = \operatorname{Sym} \sum_{j=0}^{n} \binom{n}{j} \mathbf{u}^{j} P^{[n-j]} = P^{[n]} + \operatorname{Sym} \sum_{j=1}^{n-2} \binom{n}{j} \mathbf{u}^{j} P^{[n-j]} + \rho \mathbf{u}^{n},$$

$$P^{[n]} = \operatorname{Sym} \sum_{j=0}^{n} (-1)^{j} \binom{n}{j} \mathbf{u}^{j} E^{[n-j]} = E^{[n]} + \operatorname{Sym} \sum_{j=1}^{n-2} (-1)^{j} \binom{n}{j} \mathbf{u}^{j} E^{[n-j]} + (-1)^{n} (1-n) \rho \mathbf{u}^{n}.$$

Observe that for n = 1 and half the trace for n = 2 these formulas reduce to the familiar relations

$$\begin{split} \mathbf{M} &:= \rho \mathbf{u}, & & & & & & & \\ \mathbf{u} &= \mathbf{M}/\rho, & & & & & p = \frac{2}{3} \mathcal{E} - \frac{1}{3} \rho u^2, \end{split}$$

where **M** is the momentum, $\mathcal{E} := \frac{1}{2}\rho \langle v^2 \rangle$ is the energy, and $p := \frac{1}{3}\rho \langle c^2 \rangle$ is the pressure. More generally, we have:

2.2 Temperature

The temperature is defined to be twice the average particle energy in a given direction (averaged over all three directions) in the reference frame of bulk flow: $T := \frac{1}{3}m\langle c^2 \rangle = \frac{p}{n}$, where $n := \rho/m$ is the number

density of the species. By analogy, we define the generalized temperature tensor

$$T^{[n]} := P^{[n]}/n = m \langle \mathbf{c}^n \rangle.$$

Temperature is useful in positing closure relations; for example, one may posit that the heat flux is an isotropic linear function of the temperature gradient.

2.3 Closure.

To close a system of moment evolution equations up to (n-1)th order, we need to specify $E^{[n]}$ in terms of lower-order moments. We do so by positing a constitutive relation for the "heat flux tensor" $P^{[n]}$. Probably the simplest generic closure is truncation, i.e., assuming $P^{[n]} = 0$. Then (for $n \ge 2$)

$$E^{[n]} = E^{[n]} - P^{[n]} = -\operatorname{Sym} \sum_{j=1}^{n-2} (-1)^j \binom{n}{j} \mathbf{u}^j E^{[n-j]} + (-1)^n (n-1)\rho \mathbf{u}^n.$$

Specifically, we can use one of the closure approximations

$$\begin{split} E^{[2]} &= \rho \mathbf{u}^2 & \text{(cold plasma)}, \\ E^{[3]} &= \operatorname{Sym}(3\mathbf{u}E^{[2]}) - 2\rho \mathbf{u}^3 & \text{(10-moment closure)} \\ E^{[4]} &= \operatorname{Sym}(4\mathbf{u}E^{[3]} - 6\mathbf{u}^2E^{[2]}) + 3\rho \mathbf{u}^4 & \text{(20-moment closure)} \\ E^{[5]} &= \operatorname{Sym}(5\mathbf{u}E^{[4]} - 10\mathbf{u}^2E^{[3]} + 10\mathbf{u}^3E^{[2]}) - 4\rho \mathbf{u}^5 & \text{(35-moment closure)} \\ \vdots \end{split}$$

to truncate the moment hierarchy

$$\partial_t \rho + \nabla \cdot \mathbf{M} = 0,$$

$$\partial_t \mathbf{M} + \nabla \cdot E^{[2]} = \frac{q}{m} \operatorname{Sym}(\rho \mathbf{E} + \mathbf{M} \times \mathbf{B}),$$

$$\partial_t E^{[2]} + \nabla \cdot E^{[3]} = 2\frac{q}{m} \operatorname{Sym}(\mathbf{M}\mathbf{E} + E^{[2]} \times \mathbf{B}),$$

$$\partial_t E^{[3]} + \nabla \cdot E^{[4]} = 3\frac{q}{m} \operatorname{Sym}(E^{[2]}\mathbf{E} + E^{[3]} \times \mathbf{B}).$$

$$\partial_t E^{[4]} + \nabla \cdot E^{[5]} = 4\frac{q}{m} \operatorname{Sym}(E^{[3]}\mathbf{E} + E^{[4]} \times \mathbf{B}).$$

:

A prohibitive problem with truncation closure is that it does not seem to give a hyperbolic system in case the highest moment has order greater than 2. The derivative of flux with respect to state has non-real eigenvalues, resulting in unbounded growth, i.e., an ill-posed system.

2.4 Contracted moments

In three spatial dimensions the number of independent entries in a totally symmetric *n*th order tensor in three spacial dimensions is $\binom{n+2}{2} = \frac{1}{2}(n+1)(n+2)$ and the number of moments up to *n*th order is $\binom{n+3}{3} = \frac{1}{2}(n+1)(n+2)$

 $\frac{1}{6}(n+1)(n+2)(n+3)$. (In *four* dimensions the number of independent entries in a totally symmetric *n*th order tensor is $\binom{n+3}{3}$ and the number of moments up to *n*th order is $\binom{n+4}{4} = \frac{1}{4!}(n+1)(n+2)(n+3)(n+4)$.)

n	$\binom{n+2}{2}$	$\binom{n+3}{3}$	$\binom{n+4}{4}$
0	1	1	1
1	3	4	5
2	6	10	15
3	10	$\begin{array}{c} 20\\ 35 \end{array}$	35
4	15	35	70

To avoid the expense of evolving a high number of moments yet still retain higher-order information, one can replace the evolution equation for a higher moment with a contracted evolution equation for a contracted moment. To contract a tensor you set two indices equal and sum. For example, $\sum_i \alpha_{i,i,j}$ represent the contraction of the tensor α over its first two indices. Observe that the expectation of any power of particle velocity is a totally symmetric tensor, that any contraction of a totally symmetric tensor is a totally symmetric tensor, and that for a totally symmetric tensor it is irrelevant over which two indices you contract. We are thus motivated to define the trace tr of a totally symmetric tensor α to be its contraction over (any) two of its indices: tr $\alpha := \mathbb{I} : \alpha = \alpha : \mathbb{I}$, where \mathbb{I} is the identity tensor.

For example, the 14-moment system contracts the evolution equation for the 10 independent moments $\rho \langle \mathbf{vvv} \rangle = E^{[3]}$ to get an evolution equation for the 3 moments $\rho \langle \mathbf{vvv} \rangle =: \operatorname{tr} E^{[3]}$, and twice contracts the evolution equation for the 15 independent moments $\rho \langle \mathbf{vvvv} \rangle = E^{[4]}$ to get an evolution equation for the scalar $\rho \langle \mathbf{v} \cdot \mathbf{vv} \cdot \mathbf{v} \rangle =: \operatorname{tr} \mathbf{r} E^{[4]}$.

no. moments	evolved quantities				truncation	
5	ρ ,	$\rho \mathbf{u},$	$\operatorname{tr} E^{[2]}$			$P^{[3]} = 0$
	1	+3	+1			
10	ρ ,	$\rho \mathbf{u},$	$E^{[2]}$			$P^{[3]} = 0$
	1	+3	+6			
14	ρ ,	$\rho \mathbf{u},$	$E^{[2]},$	$\operatorname{tr} E^{[3]},$	$\operatorname{tr} \operatorname{tr} E^{[4]}$	$P^{[5]} = 0$
	1	+3	+6	+3	+1	
21	ρ ,	$\rho \mathbf{u},$	$E^{[2]},$	$E^{[3]},$	$\operatorname{tr} \operatorname{tr} E^{[4]}$	$P^{[5]} = 0$
	1	+3	+6	+10	+1	
26	ρ ,	$\rho \mathbf{u},$	$E^{[2]},$	$E^{[3]},$	$\operatorname{tr} E^{[4]}$	$P^{[5]} = 0$
	1	+3	+6	+10	+6	
35	ρ ,	$\rho \mathbf{u},$	$E^{[2]},$	$E^{[3]},$	$E^{[4]}$	$P^{[5]} = 0$
	1	+3	+6	+10	+15	

Replacing a moment with a contracted moment poses a closure problem. To provide for closure one posits that the uncontracted moment $P^{[n]}$ is a linear isotropic function of its contracted moment.

In the case of the 5-moment system, positing that the pressure tensor is an isotropic linear function of a scalar gives the constitutive relation

$$P^{[2]} = \mathbb{I}p = \mathbb{I} \operatorname{tr} P^{[2]}/3.$$
(2.3)

In the case of the 14-moment system, this leads to the constitutive relations

$$P_{ijk}^{[3]} = \frac{1}{5} \sum_{m} \left(\delta_{ij} P_{kmm}^{[3]} + \delta_{ik} P_{jmm}^{[3]} + \delta_{jk} P_{imm}^{[3]} \right) = \frac{3}{5} \operatorname{Sym}(\mathbb{I} \otimes \operatorname{tr} P^{[3]})$$

and

$$P_{ijkl}^{[4]} = \frac{1}{15} \sum_{m} \sum_{n} P_{mmnn}^{[4]} \left(\delta_{ij} \delta_{kl} + \delta_{ik} \delta_{jl} + \delta_{jk} \delta_{il} \right) = \frac{3}{15} \operatorname{tr} \operatorname{tr} P^{[4]} \operatorname{Sym}(\mathbb{I} \otimes \mathbb{I}),$$
(2.4)

and in the case of the 26-moment system one gets the constitutive relation [NEED TO FINISH THIS]

where I is the identity tensor, δ_{ij} denotes Kronecker delta, and Sym is the map which takes a tensor and returns its symmetric part (obtained e.g. by averaging over all permutations of subscripts). The truncation closure remains $P^{[5]} = 0$.

2.5 10-moment system

In conserved variables the ten-moment system is

$$\partial_t \rho + \nabla \cdot \mathbf{M} = 0,$$

$$\partial_t \mathbf{M} + \nabla \cdot E^{[2]} = \frac{q}{m} \operatorname{Sym} (\rho \mathbf{E} + \mathbf{M} \times \mathbf{B}),$$

$$\partial_t E^{[2]} + \nabla \cdot E^{[3]} = 2 \frac{q}{m} \operatorname{Sym} (\mathbf{M} \mathbf{E} + E^{[2]} \times \mathbf{B}),$$

$$E^{[3]} = \operatorname{Sym}(3\mathbf{u} E^{[2]}) - 2\rho \mathbf{u}^3.$$

That is,

$$\begin{aligned} \partial_t \rho + \nabla \cdot (\rho \mathbf{u}) &= 0, \\ \partial_t (\rho \mathbf{u}) + \nabla \cdot (\rho \mathbf{u} \mathbf{u} + \mathbb{P}) &= \frac{q}{m} \rho (\mathbf{E} + \mathbf{u} \times \mathbf{B}), \\ \partial_t (\rho \mathbf{u} \mathbf{u} + \mathbb{P}) + \nabla \cdot (\rho \mathbf{u} \mathbf{u} + 3 \operatorname{Sym}(\mathbf{u} \mathbb{P})) &= \frac{q}{m} 2 \operatorname{Sym}(\rho \mathbf{u} \mathbf{E} + (\mathbb{P} + \rho \mathbf{u} \mathbf{u}) \times \mathbf{B}). \end{aligned}$$

2.6 5-moment system

The 5-moment system replaces the evolution equation for the second moment with half its trace and uses the isotropic pressure constitutive relation (2.3),

$$P^{[2]} = \mathbb{I}p = \mathbb{I}\operatorname{tr} P^{[2]}/3.$$

To obtain a corresponding constitutive relation in conserved variables for $E^{[2]}$, recall that (2.2) expresses $P^{[2]}$ in terms of conserved variables:

$$P^{[2]} = E^{[2]} - \rho \mathbf{u}\mathbf{u}.$$
(2.5)

(We remark that taking half the trace of this equation gives the familiar relation $\mathcal{E} = \frac{1}{2}\rho|\mathbf{u}|^2 + \frac{3}{2}p$, where we define the scalar energy by $\mathcal{E} := \frac{1}{2} \operatorname{tr} E^{[2]}$.) Substituting this equation and its trace into the primitive-variables constitutive relation

$$\begin{split} E^{[2]} &= \rho \mathbf{u} \mathbf{u} + \mathbb{I}p \\ &= \rho \mathbf{u} \mathbf{u} + \mathbb{I} \operatorname{tr} \left(\frac{1}{3} E^{[2]} - \frac{1}{3} \rho \mathbf{u} \mathbf{u} \right) \\ &= \rho \mathbf{u} \mathbf{u} + \mathbb{I} \left(\frac{2}{3} \mathcal{E} - \frac{1}{3} \rho |\mathbf{u}|^2 \right). \end{split}$$

Substituting this into the momentum evolution equation and taking the trace of the energy equation gives a closed system. Since

$$\begin{split} \frac{1}{2} \operatorname{tr} E^{[3]} &= \frac{1}{2} \operatorname{tr} \left[\operatorname{Sym}(3\mathbf{u} E^{[2]}) - 2\rho \mathbf{u}^3 \right], \\ &= E^{[2]} \cdot \mathbf{u} + \mathcal{E} \mathbf{u} - \rho |\mathbf{u}|^2 \mathbf{u}, \\ &= \left(\frac{5}{3} \mathcal{E} - \frac{1}{3} \rho |\mathbf{u}|^2 \right) \mathbf{u}, \end{split}$$

the 5-moment system in conserved variables is

$$\partial_t \rho + \nabla \cdot \mathbf{M} = 0,$$

$$\partial_t \mathbf{M} + \nabla \cdot \rho \mathbf{u} \mathbf{u} + \nabla \left(\frac{2}{3}\mathcal{E} - \frac{1}{3}\rho |\mathbf{u}|^2\right) = \frac{q}{m} \operatorname{Sym}(\rho \mathbf{E} + \mathbf{M} \times \mathbf{B}),$$

$$\partial_t \mathcal{E} + \nabla \cdot \left(\frac{5}{3}\mathcal{E} \mathbf{u} - \frac{1}{3}\rho |\mathbf{u}|^2 \mathbf{u}\right) = \frac{q}{m} \mathbf{M} \cdot \mathbf{E}.$$

2.7 21-moment (and 14-moment) closure for $E^{[4]}$

The 21-moment system replaces the evolution equation for $E^{[4]}$ with the trace of its trace.

Equation (2.2) gives $E^{[4]}$ in terms of $P^{[4]}$ and lower conserved moments:

$$E^{[4]} = P^{[4]} + \operatorname{Sym}(4\mathbf{u}E^{[3]} - 6\mathbf{u}^2 E^{[2]}) + 3\rho \mathbf{u}^4,$$

But $P^{[4]}$ is given from twice its trace by (2.4),

$$P_{ijkl}^{[4]} = \frac{3}{15} \operatorname{tr} \operatorname{tr} P^{[4]} \operatorname{Sym}(\mathbb{I} \otimes \mathbb{I}).$$

Twice taking the trace of (2.2) for $P^{[4]}$ in terms of $E^{[4]}$ and substituting into (2.4) gives a constitutive relation for $E^{[4]}$ in terms of its trace and lower moments,

$$E^{[4]} = \operatorname{tr} \operatorname{tr} \left(E^{[4]} - \operatorname{Sym} \left(4\mathbf{u} E^{[3]} - 6\mathbf{u}^2 E^{[2]} \right) - 3\rho \mathbf{u}^4 \right) \frac{3}{15} \operatorname{Sym} (\mathbb{I} \otimes \mathbb{I}) + \operatorname{Sym} \left(4\mathbf{u} E^{[3]} - 6\mathbf{u}^2 E^{[2]} \right) + 3\rho \mathbf{u}^4.$$

2.8 14-moment closure for $E^{[3]}$

The 14-moment system is obtained from the 21-moment system by taking the trace of the evolution equation for $E^{[3]}$. Equation (2.2) gives $E^{[3]}$ in terms of $P^{[3]}$ and lower conserved moments:

$$E^{[3]} = P^{[3]} + \operatorname{Sym}(3\mathbf{u}E^{[2]}) - 2\rho\mathbf{u}^4,$$

But $P^{[3]}$ is given from its trace by (2.4),

$$P_{ijk}^{[3]} = \frac{3}{5} \operatorname{Sym}(\mathbb{I} \otimes \operatorname{tr} P^{[3]}).$$

0

Taking the trace of (2.2) for $P^{[3]}$ in terms of $E^{[3]}$ and substituting into (2.4) gives a constitutive relation for $E^{[3]}$ in terms of its trace and lower moments:

$$E^{[3]} = \frac{3}{5} \operatorname{Sym} \left(\mathbb{I} \otimes \operatorname{tr} \left(E^{[3]} - \operatorname{Sym} \left(3\mathbf{u} E^{[2]} \right) + 2\rho \mathbf{u}^4 \right) \right) + \operatorname{Sym} \left(3\mathbf{u} E^{[2]} \right) - 2\rho \mathbf{u}^4.$$

3 Evolution of conserved moments

3.1 Momentum evolution

Let $\chi = \widetilde{\mathbf{v}}$. Define the average velocity $\mathbf{u} := \langle \mathbf{v} \rangle$ and the average proper velocity $\widetilde{\mathbf{u}} := \langle \widetilde{\mathbf{v}} \rangle$. Define the thermal velocity $\mathbf{c} := \mathbf{v} - \langle \mathbf{v} \rangle$ and the thermal proper velocity $\widetilde{\mathbf{c}} := \widetilde{\mathbf{v}} - \langle \widetilde{\mathbf{v}} \rangle$. The momentum is $\mathbf{M} := \rho \widetilde{\mathbf{u}}$. Then the velocity moment evolution becomes the the balance law for momentum,

$$\partial_t(\rho \widetilde{\mathbf{u}}) + \nabla \cdot (\rho \mathbf{u} \widetilde{\mathbf{u}} + \widetilde{\mathbb{P}}) = \frac{q}{m} \rho(\mathbf{E} + \mathbf{u} \times \mathbf{B}) + \int_{\widetilde{\mathbf{v}}} \widetilde{\mathbf{v}} C,$$

where $\widetilde{\mathbb{P}} := \rho \langle \mathbf{c} \widetilde{\mathbf{c}} \rangle$ is the pressure tensor.

3.2 "Energy" tensor evolution

[From here on results hold only for the non-relativistic domain.] Let $\chi = \mathbf{v}\mathbf{v}$. So $\langle \chi \rangle = \mathbf{u}\mathbf{u} + \langle \mathbf{c}\mathbf{c} \rangle$. Define the pressure tensor $\mathbb{P} := \rho \langle \mathbf{c}\mathbf{c} \rangle$ and the "energy tensor" $\mathbb{E} := \rho \langle \mathbf{v}\mathbf{v} \rangle$ (whose trace is twice the gas-dynamic energy). So $\mathbb{E} := \rho \mathbf{u}\mathbf{u} + \mathbb{P}$, where $\rho \mathbf{u}\mathbf{u}$ is the "kinetic energy tensor".

We calculate the terms of the velocity moment evolution equation.

$$\rho \langle \mathbf{vvv} \rangle = \rho (\mathbf{uuu} + \langle \mathbf{ccu} \rangle + \langle \mathbf{cuc} \rangle + \langle \mathbf{ucc} \rangle + \langle \mathbf{ccc} \rangle) = \rho (\mathbf{uuu} + 3 \operatorname{Sym} \langle \mathbf{ucc} \rangle + \langle \mathbf{ccc} \rangle))$$

and

$$\begin{split} \rho \langle \mathbf{a} \cdot \nabla_{\mathbf{v}} \cdot \mathbf{v} \mathbf{v} \rangle &= \rho \langle \mathbf{a} \mathbf{v} + \mathbf{v} \mathbf{a} \rangle = 2\rho \operatorname{Sym} \langle \mathbf{a} \mathbf{v} \rangle = 2\rho \operatorname{Sym} (\langle \mathbf{a} \rangle \mathbf{u} + \langle \mathbf{a} \mathbf{c} \rangle) \\ &= 2 \frac{q}{m} \rho \operatorname{Sym} ((\mathbf{E} + \mathbf{u} \times \mathbf{B}) \mathbf{u} + \langle \mathbf{c} \times \mathbf{B} \mathbf{c} \rangle) = 2 \frac{q}{m} \operatorname{Sym} (\rho \mathbf{u} \mathbf{E} + (\rho \mathbf{u} \mathbf{u} + \mathbb{P}) \times \mathbf{B}). \end{split}$$

The velocity moment evolution equation becomes the energy tensor evolution equation

$$\partial_t(\rho \mathbf{u}\mathbf{u} + \mathbb{P}) + \nabla \cdot \left(\rho \mathbf{u}\mathbf{u}\mathbf{u} + 3\operatorname{Sym}(\mathbf{u}\mathbb{P}) + \mathbb{P}^{[3]}\right) = \frac{q}{m} 2\operatorname{Sym}\left(\rho \mathbf{u}\mathbf{E} + (\mathbb{P} + \rho \mathbf{u}\mathbf{u}) \times \mathbf{B}\right) + \int_{\mathbf{v}} \mathbf{v}\mathbf{v}C.$$
(3.1)

Taking half the trace of this gives the energy evolution equation,

$$\partial_t \mathcal{E} + \nabla \cdot \left(\mathbf{u} \mathcal{E} + \mathbf{u} \cdot \mathbb{P} \right) + \rho \langle \mathbf{c} c^2 \rangle = \frac{q}{m} \rho \mathbf{u} \cdot \mathbf{E} + \int_{\mathbf{v}} C v^2 / 2.$$
(3.2)

4 Evolution of primitive moments

4.1 Evolution of generalized moment

Let $\chi(t, \mathbf{x}, \mathbf{v})$ be a generic generalized moment. (We will later impose $\chi(\mathbf{c})$. Note that $\mathbf{c}(t, \mathbf{x}, \mathbf{v}) = \mathbf{v} - \mathbf{u}(t, \mathbf{x})$.) Multiply the Boltzmann equation by χ and integrate by parts. Get the generic moment evolution equation

$$\partial_t(\rho\langle\chi\rangle) + \nabla \cdot (\rho\langle\mathbf{v}\chi\rangle) = \rho\langle(d_t^{\mathbf{v}} + \mathbf{a}\cdot\nabla_{\mathbf{v}})\chi\rangle + \int_{\mathbf{v}}\chi C,$$

where $d_t^{\mathbf{v}} := \partial_t + \mathbf{v} \cdot \nabla_{\mathbf{x}}$.

4.2 Evolution of generic thermal velocity moment

Impose $\chi(\mathbf{c})$, where $\mathbf{c} = \mathbf{v} - \mathbf{u}(t, \mathbf{x})$. So $\nabla_{\mathbf{v}} = \nabla_{\mathbf{c}}$; also, $d_t^{\mathbf{v}} \chi = (d_t^{\mathbf{v}} \mathbf{c}) \cdot \nabla_{\mathbf{c}} \chi = -(d_t^{\mathbf{v}} \mathbf{u}) \cdot \nabla_{\mathbf{c}} \chi$. So the generic moment evolution equation becomes

$$\partial_t(\rho\langle\chi\rangle) + \nabla \cdot (\rho \mathbf{u}\langle\chi\rangle) + \nabla \cdot (\rho\langle\mathbf{c}\chi\rangle) = \rho\langle(\mathbf{a} - d_t^{\mathbf{v}}\mathbf{u}) \cdot \nabla_{\mathbf{c}}\chi\rangle + \int_{\mathbf{v}} \chi C.$$

But momentum conservation says that $\langle \mathbf{a} \rangle - d_t^{\mathbf{u}} \mathbf{u} = (\nabla \cdot \mathbb{P} - \mathbf{R})/\rho$, where $\mathbf{R} = \int_{\mathbf{v}} \mathbf{v}C$ is collisional resistance. So $\mathbf{a} - (d_t^{\mathbf{v}} \mathbf{u}) = \mathbf{a}' + \langle \mathbf{a} \rangle - d_t^{\mathbf{u}} \mathbf{u} - \mathbf{c} \cdot \nabla \mathbf{u} = (\nabla \cdot \mathbb{P} - \mathbf{R})/\rho + \mathbf{a}' - \mathbf{c} \cdot \nabla \mathbf{u}$ where $\mathbf{a}' := \mathbf{a} - \langle \mathbf{a} \rangle = \frac{q}{m} \mathbf{c} \times \mathbf{B}$. So the generic thermal velocity moment evolution equation is

$$\partial_t(\rho\langle\chi\rangle) + \nabla \cdot (\rho \mathbf{u}\langle\chi\rangle) + \nabla \cdot (\rho\langle\mathbf{c}\chi\rangle) = (\nabla \cdot \mathbb{P} - \mathbf{R}) \cdot \langle\nabla_\mathbf{c}\chi\rangle + \rho\langle(\mathbf{a}' - \mathbf{c} \cdot \nabla \mathbf{u}) \cdot \nabla_\mathbf{c}\chi\rangle + \int_{\mathbf{v}} \chi C. \quad (4.1)$$

4.3 Evolution of generalized pressure tensor

Choose $\chi = \chi^{[n]} := \prod_{i=1}^{n} \mathbf{c}$. Then (4.1) gives an evolution equation for the generalized pressure $\mathbb{P}^{[n]} := \rho\langle\chi^{[n]}\rangle$. We seek to express the rest of the equation in terms of generalized pressures. Note that $\chi = \operatorname{Sym}(\chi)$ and $\mathbb{P}^{[n]} = \operatorname{Sym}(\mathbb{P}^{[n]})$. For a generic $\underline{\alpha}$,

$$\underline{\alpha} \cdot \nabla_{\mathbf{c}} \chi^{[n]} = \sum_{j} \alpha_{j} \partial_{c_{j}} \operatorname{Sym}(\chi^{[n]}) = n \operatorname{Sym}(\underline{\alpha} \chi^{[n-1]}).$$

 So

$$\rho \langle (\mathbf{a}' - \mathbf{c} \cdot \nabla \mathbf{u}) \cdot \nabla_{\mathbf{c}} \chi^{[n]} \rangle = n \rho \operatorname{Sym} \langle (\mathbf{a}' - \mathbf{c} \cdot \nabla \mathbf{u}) \chi^{[n-1]} \rangle$$
$$= n \operatorname{Sym} \left(\frac{q}{m} \mathbb{P}^{[n]} \times \mathbf{B} - \mathbb{P}^{[n]} \cdot \nabla \mathbf{u} \right)$$

The generic thermal velocity moment evolution equation becomes the following generalized pressure tensor evolution equation,

$$\delta_t(\mathbb{P}^{[n]}) + \nabla \cdot (\mathbb{P}^{[n+1]}) + n \operatorname{Sym}\left(\mathbb{P}^{[n-1]}(\mathbf{R} - \nabla \cdot \mathbb{P}^{[2]})/\rho + \mathbb{P}^{[n]} \cdot \nabla \mathbf{u}\right) = n \operatorname{Sym}\left(\frac{q}{m}\mathbb{P}^{[n]} \times \mathbf{B}\right) + \int_{\mathbf{c}} C \prod_{i=1}^n \mathbf{c} \cdot \nabla \mathbf{u}$$

4.4 Evolution of pressure tensor

In case n = 2, write $\mathbb{P} := \mathbb{P}^{[2]} = \rho \langle \mathbf{cc} \rangle$. $\mathbb{P}^{[1]} = \rho \langle \mathbf{cc} \rangle = 0$. So the pressure tensor evolution equation becomes

$$\delta_t(\mathbb{P}) + \nabla \cdot (\mathbb{P}^{[3]}) + 2\operatorname{Sym}(\mathbb{P} \cdot \nabla \mathbf{u}) = 2\operatorname{Sym}(\frac{q}{m}\mathbb{P} \times \mathbf{B}) + \int_{\mathbf{c}} C\mathbf{cc},$$

i.e.,

$$\partial_t(\mathbb{P}) + \nabla \cdot \left(\mathbb{P}^{[3]} + 3\operatorname{Sym}(\mathbf{u}\mathbb{P})\right) - 2\operatorname{Sym}(\mathbf{u}\nabla \cdot \mathbb{P}) = 2\operatorname{Sym}\left(\frac{q}{m}\mathbb{P} \times \mathbf{B}\right) + \int_{\mathbf{c}} C\mathbf{cc}.$$

Subtracting this from the evolution equation (3.2) for the energy tensor gives a kinetic energy tensor evolution equation,

$$\partial_t(\rho \mathbf{u}\mathbf{u}) + \nabla \cdot (\rho \mathbf{u}\mathbf{u}\mathbf{u}) + 2\operatorname{Sym}(\mathbf{u}\nabla \cdot \mathbb{P}) = \frac{q}{m} 2\operatorname{Sym}(\rho \mathbf{u}\mathbf{E} + (\rho \mathbf{u}\mathbf{u}) \times \mathbf{B}) + \int_{\mathbf{v}} C(\mathbf{v}\mathbf{v} - \mathbf{c}\mathbf{c}),$$

which can be obtained by multiplying the momentum equation $\rho d_t \mathbf{u} = \rho \frac{q}{m} (\mathbf{E} + \mathbf{u} \times \mathbf{B})$ by \mathbf{u} and taking the symmetric part. For closure we neglect $\mathbb{P}^{[3]}$ (which is zero if we assume that the pressure tensor is an anisotropic Gaussian) and assume that the collision operator C is zero. This will close the system, giving us the ten-moment collisionless plasma model.

4.5 Evolution of pressure

To get an evolution equation for the pressure we take the trace of the evolution equation for the pressure tensor.