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1 Boltzmann equation

Recall the Boltzmann equation,

∂tfs +∇ · (vfs) +∇ev · (afs) = Cs,

where ∇· := ∇x·, x is position, v is velocity, ṽ = γv is proper velocity, where γ := (1 + (v/c)2)−1/2, and
a = qs

ms
(E + v×B) is the rate of change of proper velocity with respect to time. (Ignore the blue text and

wide tildes if you do not care about relativity.) Drop the subscript s.

2 Evolution of “conserved” moments

Let χ(v) be a generic moment. Multiply by χ and integrate by parts. Get the generic velocity moment
evolution equation

∂t(ρ〈χ〉) +∇ · (ρ〈vχ〉) = ρ〈a · ∇evχ〉+
∫

ev χC,
where for any moment χ the statistical average 〈χ〉 is defined as the average over velocity space weighted
by the distribution f : 〈χ〉 :=

Rev χfRev f , i.e. ρ〈χ〉 :=
∫ev χf .1 In this document products are by default ten-

sor products and powers are by default tensor powers. Now choose χ[n] = vn :=
∏n
i=1 v. Let Sym

be the map which takes a tensor and returns its symmetric part (obtained by summing over all permu-
tations of the tensor subscripts and dividing by n-factorial, where n is the order of the tensor). But
a · ∇evvn =

∑
j aj∂vj Sym(vn) = n Sym(avn−1) = q

mn Sym
(
vn−1E + vn ×B

)
(which is simply a sum over

all distinguishable permutations of subscripts).

Define the generalized energy tensor E[n] :=
∫
v fv

n = ρ〈vn〉. Get the generalized conservative moment
evolution equation

∂tE
[n] +∇ · E[n+1] =

q

m
n Sym

(
E[n−1]E + E[n] ×B) +

∫
ev vnC. (2.1)

Setting n = 0 gives conservation of mass, setting n = 1 gives momentum evolution, and setting n = 2 gives
energy tensor evolution, half of whose trace is energy evolution.

2.1 Primitive variables

Equation (2.1) is a coupled infinite system of evolution equations for moments of the Boltzmann equation.
To provide finite closure we choose a maximum n and specify E[n+1] in terms of the lower moments. The
problem of closure leads one naturally consider primitive variables. The closure relation should be

1Note that this notational convention is popular with physicists, whereas mathematicians often instead define 〈χ〉 to be
the simple velocity integral

Rev χf ; I elect to use the notation of the physicists out of a predilection for molar densities.
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invariant under change of inertial reference frame, so we are naturally lead to consider moments of the
thermal speed c := v − u, where u := 〈v〉 is the bulk fluid velocity.

For n ≥ 2 the primitive moments are defined by

P [n] := ρ〈cn〉,

which we will refer to as the nth order generalized pressure. For tensor orders 0 and 1 the primitive
variables are defined to be ρ and u. The primitive variable corresponding to the scalar energy is the scalar
pressure, defined to be one third the trace of P := P [2].

To relate primitive and conserved variables we observe that

vn = Sym[vn] = Sym[(u+ c)n] = Sym
n∑
j=0

(
n

j

)
ujcn−j ,

cn = Sym[cn] = Sym[(v − u)n] = Sym
n∑
j=0

(−1)j
(
n

j

)
ujvn−j .

Primitive and conserved variables are thus related by

E[n] = Sym
n∑
j=0

(
n

j

)
ujP [n−j] = P [n] + Sym

n−2∑
j=1

(
n

j

)
ujP [n−j] + ρun,

P [n] = Sym
n∑
j=0

(−1)j
(
n

j

)
ujE[n−j] = E[n] + Sym

n−2∑
j=1

(−1)j
(
n

j

)
ujE[n−j] + (−1)n(1− n)ρun.

Observe that for n = 1 and half the trace for n = 2 these formulas reduce to the familiar relations

M :=ρu, E =
3
2
p+

1
2
ρu2,

u =M/ρ, p =
2
3
E − 1

3
ρu2,

where M is the momentum, E := 1
2ρ〈v

2〉 is the energy, and p := 1
3ρ〈c

2〉 is the pressure. More generally, we
have:

E[0] = ρ, P [0] = ρ,

E[1] = ρu, P [1] = 0,

E[2] = ρu2 + P [2], P [2] = E[2] − ρu2,

E[3] = ρu3 + Sym
(
3uP [2]

)
+ P [3], P [3] = E[3] − Sym(3uE[2]) + 2ρu3,

E[4] = ρu4 + Sym
(
6u2P [2] + 4uP [3]

)
+ P [4], P [4] = E[4] − Sym

(
4uE[3] − 6u2E[2]

)
− 3ρu4,

E[5] = ρu5 + Sym
(
10u3P [2] + 10u2P [3] + 5uP [4]

)
+ P [5], P [5] = E[5] − Sym

(
5uE[4] − 10u2E[3] + 10u3E[2]

)
+ 4ρu5

...
... (2.2)

2.2 Temperature

The temperature is defined to be twice the average particle energy in a given direction (averaged over all
three directions) in the reference frame of bulk flow: T := 1

3m〈c
2〉 = p

n , where n := ρ/m is the number
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density of the species. By analogy, we define the generalized temperature tensor

T [n] := P [n]/n = m〈cn〉.

Temperature is useful in positing closure relations; for example, one may posit that the heat flux is an
isotropic linear function of the temperature gradient.

2.3 Closure.

To close a system of moment evolution equations up to (n− 1)th order, we need to specify E[n] in terms of
lower-order moments. We do so by positing a constitutive relation for the “heat flux tensor” P [n]. Probably
the simplest generic closure is truncation, i.e., assuming P [n] = 0. Then (for n ≥ 2)

E[n] = E[n] − P [n] = −Sym
n−2∑
j=1

(−1)j
(
n

j

)
ujE[n−j] + (−1)n(n− 1)ρun.

Specifically, we can use one of the closure approximations

E[2] = ρu2 (cold plasma),

E[3] = Sym(3uE[2])− 2ρu3 (10-moment closure)

E[4] = Sym
(
4uE[3] − 6u2E[2]

)
+ 3ρu4 (20-moment closure)

)
E[5] = Sym

(
5uE[4] − 10u2E[3] + 10u3E[2]

)
− 4ρu5 (35-moment closure)

)
...

to truncate the moment hierarchy

∂tρ+∇ ·M = 0,

∂tM +∇ · E[2] =
q

m
Sym

(
ρE + M×B

)
,

∂tE
[2] +∇ · E[3] = 2

q

m
Sym

(
ME + E[2] ×B

)
,

∂tE
[3] +∇ · E[4] = 3

q

m
Sym

(
E[2]E + E[3] ×B

)
.

∂tE
[4] +∇ · E[5] = 4

q

m
Sym

(
E[3]E + E[4] ×B

)
.

...

A prohibitive problem with truncation closure is that it does not seem to give a hyperbolic system in case
the highest moment has order greater than 2. The derivative of flux with respect to state has non-real
eigenvalues, resulting in unbounded growth, i.e., an ill-posed system.

2.4 Contracted moments

In three spatial dimensions the number of independent entries in a totally symmetric nth order tensor in
three spacial dimensions is

(
n+2

2

)
= 1

2(n+ 1)(n+ 2) and the number of moments up to nth order is
(
n+3

3

)
=
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1
6(n+ 1)(n+ 2)(n+ 3). (In four dimensions the number of independent entries in a totally symmetric nth
order tensor is

(
n+3

3

)
and the number of moments up to nth order is

(
n+4

4

)
= 1

4!(n+1)(n+2)(n+3)(n+4).)

n
(
n+2

2

) (
n+3

3

) (
n+4

4

)
0 1 1 1
1 3 4 5
2 6 10 15
3 10 20 35
4 15 35 70

To avoid the expense of evolving a high number of moments yet still retain higher-order information,
one can replace the evolution equation for a higher moment with a contracted evolution equation for a
contracted moment. To contract a tensor you set two indices equal and sum. For example,

∑
i αi,i,j

represent the contraction of the tensor α over its first two indices. Observe that the expectation of any
power of particle velocity is a totally symmetric tensor, that any contraction of a totally symmetric tensor
is a totally symmetric tensor, and that for a totally symmetric tensor it is irrelevant over which two indices
you contract. We are thus motivated to define the trace tr of a totally symmetric tensor α to be its
contraction over (any) two of its indices: trα := I : α = α : I, where I is the identity tensor.

For example, the 14-moment system contracts the evolution equation for the 10 independent moments
ρ〈vvv〉 = E[3] to get an evolution equation for the 3 moments ρ〈vv ·v〉 =: trE[3], and twice contracts the
evolution equation for the 15 independent moments ρ〈vvvv〉 = E[4] to get an evolution equation for the
scalar ρ〈v · vv · v〉 =: tr trE[4].

no. moments evolved quantities truncation

5 ρ, ρu, trE[2] P [3] = 0
1 +3 +1

10 ρ, ρu, E[2] P [3] = 0
1 +3 +6

14 ρ, ρu, E[2], trE[3], tr trE[4] P [5] = 0
1 +3 +6 +3 +1

21 ρ, ρu, E[2], E[3], tr trE[4] P [5] = 0
1 +3 +6 +10 +1

26 ρ, ρu, E[2], E[3], trE[4] P [5] = 0
1 +3 +6 +10 +6

35 ρ, ρu, E[2], E[3], E[4] P [5] = 0
1 +3 +6 +10 +15

Replacing a moment with a contracted moment poses a closure problem. To provide for closure one posits
that the uncontracted moment P [n] is a linear isotropic function of its contracted moment.

In the case of the 5-moment system, positing that the pressure tensor is an isotropic linear function of a
scalar gives the constitutive relation

P [2] = Ip = I trP [2]/3. (2.3)

In the case of the 14-moment system, this leads to the constitutive relations

P
[3]
ijk =

1
5

∑
m

(
δijP

[3]
kmm + δikP

[3]
jmm + δjkP

[3]
imm

)
=

3
5

Sym(I⊗ trP [3])
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and

P
[4]
ijkl =

1
15

∑
m

∑
n

P [4]
mmnn

(
δijδkl + δikδjl + δjkδil

)
=

3
15

tr trP [4] Sym(I⊗ I), (2.4)

and in the case of the 26-moment system one gets the constitutive relation [NEED TO FINISH THIS]

where I is the identity tensor, δij denotes Kronecker delta, and Sym is the map which takes a tensor and
returns its symmetric part (obtained e.g. by averaging over all permutations of subscripts). The truncation
closure remains P [5] = 0.

2.5 10-moment system

In conserved variables the ten-moment system is

∂tρ+ ∇ ·M = 0,

∂tM+∇ · E[2] =
q

m
Sym

(
ρE + M×B

)
,

∂tE
[2]+∇ · E[3] = 2

q

m
Sym

(
ME + E[2] ×B

)
,

E[3] = Sym(3uE[2])− 2ρu3.

That is,

∂tρ+∇ · (ρu) = 0,

∂t(ρu) +∇ · (ρuu + P) =
q

m
ρ(E + u×B),

∂t(ρuu + P) +∇ ·
(
ρuuu + 3 Sym(uP)

)
=

q

m
2 Sym

(
ρuE + (P + ρuu)×B

)
.

2.6 5-moment system

The 5-moment system replaces the evolution equation for the second moment with half its trace and uses
the isotropic pressure constitutive relation (2.3),

P [2] = Ip = I trP [2]/3.

To obtain a corresponding constitutive relation in conserved variables for E[2], recall that (2.2) expresses
P [2] in terms of conserved variables:

P [2] = E[2] − ρuu. (2.5)

(We remark that taking half the trace of this equation gives the familiar relation E = 1
2ρ|u|

2 + 3
2p, where

we define the scalar energy by E := 1
2 trE[2].) Substituting this equation and its trace into the primitive-

variables constitutive relation gives the conservative-variables constitutive relation

E[2] = ρuu + Ip

= ρuu + I tr
(1

3
E[2] − 1

3
ρuu

)
= ρuu + I

(2
3
E − 1

3
ρ|u|2

)
.
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Substituting this into the momentum evolution equation and taking the trace of the energy equation gives
a closed system. Since

1
2

trE[3] =
1
2

tr
[

Sym(3uE[2])− 2ρu3
]
,

= E[2] · u + Eu− ρ|u|2u,

=
(5

3
E − 1

3
ρ|u|2

)
u,

the 5-moment system in conserved variables is

∂tρ+∇ ·M = 0,

∂tM +∇ · ρuu +∇
(2

3
E − 1

3
ρ|u|2

)
=

q

m
Sym

(
ρE + M×B

)
,

∂tE +∇ ·
(5

3
Eu− 1

3
ρ|u|2u

)
=

q

m
M ·E.

2.7 21-moment (and 14-moment) closure for E[4]

The 21-moment system replaces the evolution equation for E[4] with the trace of its trace.

Equation (2.2) gives E[4] in terms of P [4] and lower conserved moments:

E[4] = P [4] + Sym
(
4uE[3] − 6u2E[2]

)
+ 3ρu4,

But P [4] is given from twice its trace by (2.4),

P
[4]
ijkl =

3
15

tr trP [4] Sym(I⊗ I).

Twice taking the trace of (2.2) for P [4] in terms of E[4] and substituting into (2.4) gives a constitutive
relation for E[4] in terms of its trace and lower moments,

E[4] = tr tr
(
E[4] − Sym

(
4uE[3] − 6u2E[2]

)
− 3ρu4

) 3
15

Sym(I⊗ I) + Sym
(
4uE[3] − 6u2E[2]

)
+ 3ρu4.

2.8 14-moment closure for E[3]

The 14-moment system is obtained from the 21-moment system by taking the trace of the evolution
equation for E[3]. Equation (2.2) gives E[3] in terms of P [3] and lower conserved moments:

E[3] = P [3] + Sym
(
3uE[2])− 2ρu4,

But P [3] is given from its trace by (2.4),

P
[3]
ijk =

3
5

Sym(I⊗ trP [3]).

Taking the trace of (2.2) for P [3] in terms of E[3] and substituting into (2.4) gives a constitutive relation
for E[3] in terms of its trace and lower moments:

E[3] =
3
5

Sym
(
I⊗ tr (E[3] − Sym

(
3uE[2]) + 2ρu4)

)
+ Sym(3uE[2])− 2ρu4.
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3 Evolution of conserved moments

3.1 Momentum evolution

Let χ = ṽ. Define the average velocity u := 〈v〉 and the average proper velocity ũ := 〈ṽ〉. Define the
thermal velocity c := v − 〈v〉 and the thermal proper velocity c̃ := ṽ − 〈ṽ〉. The momentum is M := ρũ.
Then the velocity moment evolution becomes the the balance law for momentum,

∂t(ρũ) +∇ · (ρuũ + P̃) =
q

m
ρ(E + u×B) +

∫
ev ṽC,

where P̃ := ρ〈cc̃〉 is the pressure tensor.

3.2 “Energy” tensor evolution

[From here on results hold only for the non-relativistic domain.] Let χ = vv. So 〈χ〉 = uu + 〈cc〉. Define
the pressure tensor P := ρ〈cc〉 and the “energy tensor” E := ρ〈vv〉 (whose trace is twice the gas-dynamic
energy). So E := ρuu + P, where ρuu is the “kinetic energy tensor”.

We calculate the terms of the velocity moment evolution equation.

ρ〈vvv〉 = ρ(uuu + 〈ccu〉+ 〈cuc〉+ 〈ucc〉+ 〈ccc〉) = ρ(uuu + 3 Sym〈ucc〉+ 〈ccc〉))

and

ρ〈a · ∇v · vv〉 = ρ〈av + va〉 = 2ρSym〈av〉 = 2ρ Sym(〈a〉u + 〈ac〉)

= 2
q

m
ρ Sym((E + u×B)u + 〈c×Bc〉) = 2

q

m
Sym(ρuE + (ρuu + P)×B).

The velocity moment evolution equation becomes the energy tensor evolution equation

∂t(ρuu + P) +∇ ·
(
ρuuu + 3 Sym(uP) + P[3]

)
=

q

m
2 Sym

(
ρuE + (P + ρuu)×B

)
+
∫
v
vvC. (3.1)

Taking half the trace of this gives the energy evolution equation,

∂tE +∇ ·
(
uE + u · P) + ρ〈cc2〉

)
=

q

m
ρu ·E +

∫
v
Cv2/2. (3.2)

4 Evolution of primitive moments

4.1 Evolution of generalized moment

Let χ(t,x,v) be a generic generalized moment. (We will later impose χ(c). Note that c(t,x,v) = v −
u(t,x).) Multiply the Boltzmann equation by χ and integrate by parts. Get the generic moment evolution
equation

∂t(ρ〈χ〉) +∇ · (ρ〈vχ〉) = ρ〈(dvt + a · ∇v)χ〉+
∫
v
χC,

where dvt := ∂t + v · ∇x.
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4.2 Evolution of generic thermal velocity moment

Impose χ(c), where c = v− u(t,x). So ∇v = ∇c; also, dvt χ = (dvt c) · ∇cχ = −(dvt u) · ∇cχ. So the generic
moment evolution equation becomes

∂t(ρ〈χ〉) +∇ · (ρu〈χ〉) +∇ · (ρ〈cχ〉) = ρ〈(a− dvt u) · ∇cχ〉+
∫
v
χC.

But momentum conservation says that 〈a〉−dut u = (∇·P−R)/ρ, where R =
∫
v vC is collisional resistance.

So a− (dvt u) = a′ + 〈a〉 − dut u− c · ∇u = (∇ · P−R)/ρ+ a′ − c · ∇u where a′ := a− 〈a〉 = q
mc×B. So

the generic thermal velocity moment evolution equation is

∂t(ρ〈χ〉) +∇ · (ρu〈χ〉) +∇ · (ρ〈cχ〉) = (∇ · P−R) · 〈∇cχ〉+ ρ〈(a′ − c · ∇u) · ∇cχ〉+
∫
v
χC. (4.1)

4.3 Evolution of generalized pressure tensor

Choose χ = χ[n] :=
∏n
i=1 c. Then (4.1) gives an evolution equation for the generalized pressure P[n] :=

ρ〈χ[n]〉. We seek to express the rest of the equation in terms of generalized pressures. Note that χ = Sym(χ)
and P[n] = Sym(P[n]). For a generic α,

α · ∇cχ
[n] =

∑
j

αj∂cj Sym(χ[n]) = n Sym(αχ[n−1]).

So

ρ〈(a′ − c · ∇u) · ∇cχ
[n]〉 = nρ Sym〈(a′ − c · ∇u)χ[n−1]〉

= n Sym
( q
m

P[n] ×B− P[n] · ∇u
)

The generic thermal velocity moment evolution equation becomes the following generalized pressure tensor
evolution equation,

δ̄t(P[n]) +∇ · (P[n+1]) + n Sym
(
P[n−1](R−∇ · P[2])/ρ+ P[n] · ∇u

)
= n Sym

( q
m

P[n] ×B
)

+
∫
c
C

n∏
i=1

c.

4.4 Evolution of pressure tensor

In case n = 2, write P := P[2] = ρ〈cc〉. P[1] = ρ〈c〉 = 0. So the pressure tensor evolution equation becomes

δ̄t(P) +∇ · (P[3]) + 2 Sym
(
P · ∇u

)
= 2 Sym

( q
m

P×B
)

+
∫
c
Ccc,

i.e.,

∂t(P) +∇ ·
(
P[3] + 3 Sym(uP)

)
− 2 Sym(u∇ · P) = 2 Sym

( q
m

P×B
)

+
∫
c
Ccc.

Subtracting this from the evolution equation (3.2) for the energy tensor gives a kinetic energy tensor
evolution equation,

∂t(ρuu) +∇ ·
(
ρuuu

)
+ 2 Sym(u∇ · P) =

q

m
2 Sym

(
ρuE + (ρuu)×B

)
+
∫
v
C(vv − cc),
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which can be obtained by multiplying the momentum equation ρdtu = ρ qm
(
E + u ×B

)
by u and taking

the symmetric part. For closure we neglect P[3] (which is zero if we assume that the pressure tensor is an
anisotropic Gaussian) and assume that the collision operator C is zero. This will close the system, giving
us the ten-moment collisionless plasma model.

4.5 Evolution of pressure

To get an evolution equation for the pressure we take the trace of the evolution equation for the pressure
tensor.
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