
Plasma notes: Ohm’s Law and Hall MHD
by E. Alec Johnson, October, 2007.

1 Boltzmann equation

The Boltzmann equation for species s is an evolution equation for particle density in phase space. Phase
space is a collection of coordinates which bijectively specify the state of a particle. For point particles,
such as electrons and protons, points in phase space are represented by (x, ṽ), the position and (proper)
velocity of the particle. (Ignore the blue text and wide tildes if you do not care about the special relativistic
regime. If you do care about relativistic effects the blue text is incomplete and needs to be fixed; read
Cercignani’s 2002 book on the Relativistic Boltzmann Equation instead. So just ignore the blue text.)
For molecules with other degrees of freedom, phase space must also include other variables which specify
not only translational modes, but such state quantities as rotational and vibrational modes. The rate of
motion of a particle through phase space is (ẋ, ˙̃v) =: (v,a). The Boltzmann equation specifies particle
balance in phase space:

∂tfs +∇ · (vfs) +∇ev · (asfs) = Cs.

Here s is the species index, x is position in space, v is particle velocity, ṽ = γv is proper velocity,
fs = fp

s (t,x, ṽ) is the particle density of species s (i.e., fp
s (t,x, ṽ) dx dṽ is the number of particles in the

infinitesimal box dx dṽ), as = qs
ms

(E + v ×B) + g = dtvs is the rate of change of the proper velocity of
a particle (where qs is charge per particle, ms is mass per particle, E is electric field, B is magnetic field,
g is gravitational field), and Cs = Cp

s , known as the collision operator, is the rate of change in particle
density due purely to collisions (within species s or with other species). Note that Cs is an operator which
depends on the distribution functions of each species regarded as a function of velocity (but not of position
or time): Cs[(v 7→ fβ(t,x,v))β∈Σ], where Σ is the set of all species indices.

1.1 Notes on the relatistic Boltzmann equation

We use dτ to denote the elapse of proper time. By the invariance of the Lorentz metric under inertial
transformations, dτ2 = dt2− (dx/c)2. Dividing alternatively by dτ2 and dt2 shows that the Lorentz factor
γ := dt

dτ as a function of velocity and as a function of proper velocity is γ(v) = (1 −
(
v
c

)2)−1/2 = γ̃(ṽ) =
(1 +

( ev
c

)2)1/2.

1.1.1 Differentation of the Lorentz factor

To express derivatives of the Lorentz factor in terms of derivatives of the proper velocity, we differentiate
the relation γ2 = 1 + ṽ2. We get γ dγ = (dṽ) · ṽ, i.e.,

dγ̃(ṽ) = (dṽ) · ṽ
γ̃(ṽ)

.
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1.1.2 Derivation of the Boltzmann equation

∂tfs +∇x ·
(
(dtx)fs

)
+∇ev · (dtṽsfs) = Cs.

∂tfs +∇x ·
((dτx)
γs

fs
)

+∇ev · (dτ ṽsγs
fs
)

= Cs.

∂tfs +∇ · (vfs) +∇ev · (asfs) = Cs.

1.1.3 Conventions of interpretation

Note that by multiplying by ms or qs and, respectively, by making the redefinitions fs := fm
s := msf

p
s

and Cs := Cm
s := msC

p
s , or fs := fq

s := qsf
p
s and Cs := Cq

s := qsC
p
s , we can also regard the Boltzmann

equation as a statement of conservation of mass or charge.

Henceforth, we drop the default species index s (except as a reminder, particularly when making definitions)
until we consider multiple species. So there is an implicit species index s on most variables (except for the
independent variables t,x, ṽ (and χ(ṽ) below) and the field variables E,B,g).

2 Species balance laws

Henceforth we view the Boltzmann equation by default as mass-conservation in phase space. Taking
moments of the Boltzmann equation yields balance laws for density, momentum, and energy. Define∫ev :=

∫ev∈R3 . Define ρs :=
∫ev fs, 〈M〉s :=

RevMfs
ρs

, the average velocity us = 〈v〉s, and the thermal velocity
cs := vs−us. Define the average proper velocity ũs = 〈ṽ〉s and the thermal proper velocity c̃s := ṽs− ũs.
Let χ be a moment function (power) of v (e.g., 1, v, v2, or vv). To compute moments we multiply the
Boltzmann equation by χ and integrate over ṽ:
χ = χ:

∫ev χ∂tf +
∫ev χ∇x · (vf) +

∫ev χ∇ev · (af) =
∫ev χCs

∂t
∫ev χf + ∇x ·

∫ev vχf +(((((
((∫ev∇ev · (aχf)−

∫ev fa · ∇evχ =
∫ev χCs

∂t(ρ〈χ〉) + ∇x · (ρ〈vχ〉) + −ρ〈a · ∇evχ〉 =
∫ev χCs

Defining ∇ := ∇x, we have the moment equations:
χ = χ: ∂t(ρ〈χ〉) + ∇ · (ρ〈vχ〉) = ρ〈a · ∇evχ〉 +

∫ev Csχ,
χ = 1: ∂tρ + ∇ · (ρu) = 0 +

∫ev Cs =: Ss,
χ = ṽ: ∂t(ρũ) + ∇ · (ρ〈vṽ〉) = ρ〈a〉 +

∫ev Csṽ =: As,
χ = cγ̃(ṽ) = ṽ0 : ∂t(ρ〈cγ〉) + ∇ · (ρ〈vcγ〉) = ρ〈a · v/c〉 +

∫ev Cscγ,
χ = ṽ2/2: ∂t(ρ〈ṽ2〉/2) + ∇ · (ρ〈vṽ2〉/2) = ρ〈a · ṽ〉 +

∫ev Csṽ2/2 =: Qs,
χ = ṽṽ: ∂t(ρ〈ṽṽ〉) + ∇ · (ρ〈vṽṽ〉) = ρ〈aṽ + ṽa〉 +

∫ev Csṽṽ.

Here c is the speed of light, Ss is the rate of production of mass of species s due to collisions, and
As = ũSs + (Rs :=

∫ec c̃Cs) is the rate of production of momentum due to collisions, where Rs is the
resistive force on species s due to collisions. Qs = Ssũ2/2 +Rs · ũ+ (Hs :=

∫ec c̃2Cs/2) is the rate of energy
production due to collisions with other species, where Rs · ũ is the rate of work due to the resistive force
and Hs is the rate of production of heat in species s due to collisions.
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2.1 χ = 1: Balance of particles, mass, and charge

In the moment equations we can regard ρ as the particle number density ns :=
∫ev fp

s , the mass density ρs :=∫ev fm
s , or the charge density σs :=

∫ev fq
s . Define the current Js := σsus. Define δ̄st := a 7→ ∂ta+∇ · (usa),

the transport (or bulk) derivative for species s. Then we can write particle, mass, and charge balance as

δ̄st (n) = ∂tn+∇ · (nu) = Sp
s :=

∫
v
Cp
s ,

δ̄st (ρ) = ∂tρ +∇ · (ρu) = Ss := Sm
s :=

∫
v
Cm
s = mSp

s ,

δ̄st (σ) = ∂tσ +∇ · J = Sq
s := qSp

s .

2.2 χ = ṽ: Balance of momentum (i.e. mass flux) and current (i.e. charge flux)

Recall that cs := vs − us is the thermal velocity of species s. Observe that 〈c〉 = 〈v − u〉 = 〈v〉 − u = 0.
Likewise, c̃s := ṽs − ũs is the proper thermal velocity of species s, and observe that 〈c̃〉 = 〈ṽ − ũ〉 =
〈ṽ〉 − ũ = 0. Use 〈vṽ〉 = 〈(u + c)(ũ + c̃)〉 = uũ + 〈cc̃〉. Use 〈a〉 = q

m(E + u×B) + g. Define the pressure
tensor Ps := ρs〈csc̃s〉, i.e. the flux of (thermal) momentum across a boundary convected with the species
velocity us, and define the electrokinetic pressure tensor Pq

s := σs〈csc̃s〉, i.e. the flux of (thermal) charge
flux across a boundary convected with the species velocity us. The first moment equation becomes

∂t(ρũ) +∇ · (ρuũ + ρ〈cc̃〉︸ ︷︷ ︸
P

) = nq(E + u×B)︸ ︷︷ ︸
σE+J×B

+ ρg + As, i.e.,

∂t( σũ︸︷︷︸eJ
) +∇ · (σuũ + σ〈cc̃〉︸ ︷︷ ︸

Pq

) = n
q2

m
(E + u×B)︸ ︷︷ ︸
q
m

(σE+J×B)

+ σg + (Aq
s := (q/m)As).

2.3 χ = ṽ2/2: Classical balance of energy

Use 〈vṽ2〉 = 〈(u + c)(ũ + c̃) · (ũ + c̃)〉 = uũ2 + u〈c̃2〉 + 2ũ · 〈cc̃〉 + 〈cc̃2.〉 Use 〈ṽ2〉 = ũ2 + 〈c̃2〉. Use
〈a · ṽ〉 = 〈( qm(E + v ×B) + g) · ṽ〉 = 〈 qm ṽ · E + ṽ · g〉 = q

m ũ · E + ũ · g = 〈a〉 · ṽ. The second moment
equation becomes

∂t

(
ρ
ũ2

2︸︷︷︸
Ek

+ ρ
〈c̃2〉

2︸ ︷︷ ︸
Et︸ ︷︷ ︸

E

)
+∇ ·

(
u ρ
( ũ2

2
+
〈c̃2〉

2
)

︸ ︷︷ ︸
E

+ ũ · ρ〈cc̃〉︸ ︷︷ ︸
P

+ ρ〈c c̃2

2
〉︸ ︷︷ ︸

q

)
= nqũ︸︷︷︸eJ

·E + nm︸︷︷︸
ρ

ũ · g +Qs,

where Ek
s := ρũ2

s/2 is the classical kinetic energy, Et
s := ρ〈c̃2

s〉/2 is the classical thermal energy, Es :=
Ek
s + Et

s = ρs
( eu2

s
2 + 〈ec2

s〉
2

)
is the gas energy, qs := ρs〈c̃sc̃2

s/2〉 is the heat flux, i.e. the flux of heat energy
through a boundary convected with the species velocity us, and Qs :=

∫ev Cm
s ṽ2/2 is the rate of energy

production (due to collisions with other species). That is,

∂tE +∇ · (uE + ũ · P + q) = J̃ ·E + ρũ · g +Qs.
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2.4 Convective derivative

Define dst := ∂t + us · ∇, the convective derivative for species s. Verify the following Leibnitz rule for
transport derivatives: δ̄t(ab) = (δ̄ta)b + a(dtb). So by mass balance (δ̄tρ = Ss), we can write for any
quantity b:

δ̄t(ρb) = ρdt(b) + Ssb.

Since δ̄t(ρũ) = ρdtũ + Saũ and As = ũSs + Rs, we can write momentum balance as:

ρsd
s
t ũs +∇ · Ps = σsE + Js ×B + ρsg + Rs.

2.5 Classical kinetic energy balance

To get an equation for kinetic energy balance, we simply dot ũ with momentum balance. Since ũ ·ρdt(ũ) =
ρdt(ũ2/2) = δ̄t(ρũ2/2)− Ssũ2/2, we get

δ̄t(ρũ2/2) + ũ · ∇ · P = J̃ ·E + ρũ · g + Saũ2/2 + ũ ·Rs.

2.6 Classical thermal energy balance

Recall energy balance:

δ̄t(ρũ2/2 + ρ〈c̃2〉/2) +∇ · (ũ · P + q) = J̃ ·E + ρũ · g + Ssũ2/2 + ũ ·Rs +Hs.

To obtain thermal energy balance, we subtract kinetic energy balance from energy balance. We get

δ̄t(ρ〈c̃2〉/2) + (∇ũ) : P +∇ · q = Hs.

Observe that all macroscopic forces have disappeared, as one would expect.

2.7 χ = c2γ: relativistic balance of energy

Recall relativistic balance of energy:

∂t(ρc2〈γ〉) +∇ · (ρc2〈vγ〉) = ρ〈a · v〉+
∫

ev Csc2γ.

Relativistic kinetic energy is defined to be the energy minus the rest energy. Recall balance of rest energy:

∂tρc
2 +∇ · (ρc2u) = (

∫
ev Csc2 = c2Ss).

Subtracting the rest energy from the energy gives microscopic kinetic energy balance. (This is not the
balance of macroscopic kinetic energy).
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2.8 Relativistic kinetic energy balance

To get an equation for balance of bulk (macroscopic) kinetic energy, we begin with its definition: Ẽk :=
ρ(γ̃(ũ)− 1). So

δ̄t(Ẽk) = δ̄t(ρ(γ̃(ũ)− 1))
= ρdt(γ̃(ũ)− 1) + Ss(γ̃(ũ)− 1)
= ρdt(ũ) · ∇eu · γ̃(ũ) + Ss(γ̃(ũ)− 1)
= ρdt(ũ) · ũ/γ̃(ũ) + Ss(γ̃(ũ)− 1).

So we can get an equation for kinetic energy balance by taking the dot product of momentum conservation
with eueγ(eu) (note that in general ũ 6= γ̃(ũ)u, i.e., 〈ṽ〉 = 〈γ(v)v〉 6= γ(〈v〉)〈v〉):(

ρdtũ +∇ · P = σE + J×B + ρg + Rs

)
· ũ/γ̃(ũ).

ρdt(γ̃(ũ)− 1) +
(
ũ/γ̃(ũ)

)
· ∇ · P = (σE + J×B + ρg + Rs) · ũ/γ̃(ũ).

δ̄t(ρ(γ̃(ũ)− 1)) +
(
ũ/γ̃(ũ)

)
· ∇ · P = (σE + J×B + ρg + Rs) · ũ/γ̃(ũ) + Ss(γ̃(ũ)− 1).

3 Species constitutive equations

[From here unless otherwise indicated results hold only for the non-relativistic domain.]

To close the two-fluid system, it is necessary to supply constitutive relations for the pressure tensor, heat
flux, and drag force in terms of the mass, momentum, and energy of each species.

3.1 Constitutive relation for pressure

Define the scalar pressure p to be one-third the trace of the pressure tensor. The translational thermal
energy is half the trace of the pressure tensor, i.e.,

(translational thermal energy) = (3/2)p.

The simplest constitutive relation for the pressure tensor is to assume the thermodynamic equilibrium
condition that the thermal energy is equally distributed among all degrees of freedom of the system.
Assume that there are α degrees of freedom. Then

(thermal energy) = (α/2)p.

The translational thermal energy density along a particular axis is half the pressure along that axis. So in
equilibrium the pressure in all directions is equal, i.e., the pressure tensor equals the scalar pressure times
the identity tensor:

P = pI.

In summary,

E = (α/2)p+ (1/2)ρu2.
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3.2 Constitutive equation for drag force

We derive a constitutive equation for the interspecies drag force, which we will need to supply a consitutive
equation in Ohm’s law for the resistance (due to collisions).

Current density is the flux rate of charge density. Momentum is the flux rate of mass density. Collisions
conserve momentum, but they do not conserve current density. This implies that a constitutive relation
for inter-species drag forces will be needed in the balance law for net current.

We seek a constitutive relation for Rs, the resistive drag on species s due to collisions with other species
that do not produce or destroy species s. Assuming that collisions do not destroy species s if and only if
they do not destroy species p, Newton’s third law gives Rsp = −Rps.

We assume that drag force is jointly proportional to the densities of the interacting species and their
difference in velocity: Rsp := νspnsnp(up − us), where ns is the number density of species s. So νsp = νps.

4 Entropy invariance

In the adiabatic case (P = pI, q = 0, H = 0, S = 0),

α

2
δ̄t(p) + (∇ · u)p = 0, i.e.,

α

2
dtp+

α+ 2
2

p∇ · u.

But mass conservation says that ∇ · u = −dt ln ρ, so

dt ln p =
α+ 2
α

dt ln ρ, i.e.,

dt ln(pρ−γ) = 0, where γ :=
α+ 2
α

.

5 Net fluid balance laws

[We resume noting relativistic corrections.]

The equations of magnetohydrodynamics (MHD) are a set of balance laws for the net mass, momentum,
and energy (summed over all species) and for the magnetic field. A balance law for current, called Ohm’s
law, provides a constitutive relation that allows us to eliminate the electric field.

5.1 Balance of mass

Balance of (rest) mass per species is

∂t(ρs) +∇ · (ρsus) = Ss,

where s is the species index, ρs is mass density, us is fluid velocity, and Ss is the rate of production of
species s due to collisions.
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This is a Lorentz-invariant equation which asserts that the four-divergence of the scalar
( ρs
γ(us)

)
times the

four-vector ũ is the rate of production of proper mass, Ss :=
∫ev C:

∂ct

(( ρs
γ(us)

)
(cγ(us))

)
+∇ ·

(( ρs
γ(us)

)
γ(us)us

)
= Ss.

Summing over all species gives

∂t(ρ) +∇ · (ρu) = 0,

where ρ :=
∑

s ρs is the total mass density, (ρu) :=
∑

s(ρsus), the total mass flux, defines the net fluid
velocity u, and S :=

∑
s Ss, the net rate of mass production, is assumed to be zero.

Define δ̄t := a 7→ ∂ta+∇ · (ua)= ∂xµ
((

a
γ(u)

)(
γ(u)uµ

))
, the transport (or bulk) derivative. Then the mass

balance law becomes

δ̄t(ρ) = 0.

[From here on results hold only for the non-relativistic domain.]

5.2 Balance of momentum

Recall balance of momentum for each species:

∂t(ρsũs) +∇ · (ρsusũs) +∇ · Ps = σsE + Js ×B + ρsg + As,

where Ps is the pressure tensor (the flux of momentum across a boundary convected with the species),
σs is the charge density, Js is the current density, E is the electric field, B is the magnetic field, g is the
gravitational field, and As is the resistive drag due to collisions with other species (regardless of whether
the collisions do or do not create or destroy species s).

Summing over all species gives net balance of momentum:

∂t(ρũ) +∇ · (ρũũ) +∇ · P̃ = σE + J×B + ρg,

where ρ :=
∑

s ρs is the total mass density, (ρũ) :=
∑

s ρsũs defines the overall fluid velocity, ws := us−u
is the diffusion (or drift) velocity of species s, w̃s := ũs − ũ is the proper diffusion (or drift) velocity of
species s, Pd :=

∑
a Pd

s :=
∑

s ρswsw̃s is the total diffusion pressure tensor, Pt :=
∑

s Ps is the total
thermal pressure tensor, P̃ := Pt + Pd is the total pressure tensor (i.e., the total flux of momentum due to
thermal and species diffusion across a boundary convected by global mean velocity), σ :=

∑
a σs is the net

charge density, and J :=
∑

s Js is the net current. Note that
∑

sAs = 0, since momentum is conserved in
all collisions (whether particles are converted to other types of species or not).

5.2.1 Convective derivative

Observe that the first two terms of the momentum balance equation are the transport derivative of the
momentum, δ̄t(ρu).

As before, define dt := ∂t + u · ∇, the convective derivative (for the bulk fluid). Verify/recall the Leibnitz
rule for transport derivatives: δ̄t(ab) = (δ̄ta)b+ a(dtb). So by the conservation of mass equation, δ̄tρ = 0,
we can pull ρ out of a transport derivative, thereby turning it into a convective derivative: for example,
δ̄t(ρu) = ρdt(u), i.e., ∂t(ρu) +∇ · (ρuu) = ρ(∂tu + u · ∇u).
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5.2.2 Conservation of momentum

To recast momentum balance as a conservation law, we use Maxwell’s equations to recast the source term
as the time derivative of the momentum of the magnetic field plus the divergence of a stress tensor:

σE + J×B

= ε0(∇ ·E)E +
(
µ−1

0 ∇×B−ε0∂tE
)
×B

= ε0(∇ ·E)E + µ−1
0 (∇×B)×B−ε0(∂tE)×B

= ε0(∇ ·E)E + µ−1
0

(
B · ∇B−∇B2/2

)
−ε0

[
∂t(E×B)−E× ∂tB

]
= −ε0∂t(E×B) + µ−1

0

(
B · ∇B−∇B2/2

)
−ε0E× (∇×E) + ε0(∇ ·E)E

= −ε0∂t(E×B) + µ−1
0

(
B · ∇B−∇B2/2

)
+ε0

(
E · ∇E− (∇E) ·E + (∇ ·E)E

)
= −ε0∂t(E×B) + µ−1

0 ∇ ·
(
BB− IB2/2

)
+ε0

(
∇ · (EE)−∇(E2/2)

)
= −∂t(ε0E×B) +∇ ·

(
µ−1

0

(
BB− IB2/2

)
+ε0

(
EE− IE2/2

))
= −∂t(S/c2) +∇ · TEB,

where S := µ−1
0 E × B is the Poynting vector, S/c2 is the momentum of the electromagnetic field, and

TEB := µ−1
0

(
BB− IB2/2

)
+ε0

(
EE− IE2/2

)
is the electromagnetic stress tensor.

Writing g = −∇χ, conservation of momentum reads

δ̄t(ρu)+∂t(ε0E×B) +∇ · P̃ +∇χ = ∇ · TEB.

The one-fluid theory eliminates the electric field by neglecting the displacement current ∂tE and second-
order terms in E. This effectively sets E = 0 in the momentum equation, so you can delete all the colored
text, and one-fluid conservation of momentum reads

δ̄t(ρu) +∇ · P̃ +∇ · µ−1
0

(
IB2/2−BB

)
+∇χ = 0. (5.1)

5.3 Balance of current (Ohm’s law)

The version of Ohm’s law used is what determines the model of MHD: ideal, resistive, Hall, or extended.
Ohm’s law specifies the evolution of electrical current in a plasma (in response to electromagnetic field)
in terms of the quantities of the one-fluid plasma model (MHD). Recall Faraday’s law: ∂tB +∇×E = 0.
Ohm’s law is a balance law for the current. Ohm’s law is a constitutive relation that we use to eliminate E
from Faraday’s law. The primary assumptions used to derive the generalized Ohm’s law are quasineutrality
and that there are only two species, ions and electrons.

Each momentum balance equation becomes a current balance law if we multiply it by the ratio of charge
to mass:

∂t(σsus) +∇ · (σsusus) +∇ · Pqs =
qs
ms

(σsE + Js ×B) + σsg + Aq
s,

where (for species s) Pq
s := qs

ms
Ps is the electrokinetic pressure tensor, and Aq

s := qs
ms

As is the production
of current due to collisions.

Summing over all species gives net current balance. The net current is
∑

s σsus =
∑

s Js =: J. Define
also J′ :=

∑
s J′s :=

∑
s σsws, the current density in the reference frame of the fluid. Observe that
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J′ =
∑

s σs(us − u) = J− σu. Then the current fluxes sum as:∑
s

σsusus =
∑
s

σs(u + ws)(u + ws)

=
∑
s

(
σsuu + σswsu + σsuws + σswsws

)
= σuu + J′u + uJ′ +

∑
s

σswsws

= Ju + uJ− σuu +
∑
s

σswsws.

Define Pqd
s := σswsws = J′sJ

′
s/σs (=

∑
s
qs
ms

Pd
s ), the diffusion electrokinetic pressure tensor for species

s, and Pqd :=
∑

s Pqd
s =

∑
s σswsws, the total diffusion electrokinetic pressure tensor. We also define

Pq :=
∑

s Pq
s , the total thermal electrokinetic pressure tensor . So total current balance reads

∂tJ +∇ · (Ju + uJ− σuu +
∑
s

J′sJ
′
s/σs) +∇ · Pq =

∑
s

qs
ms

(σsE + Js ×B) + σg + Aq,

where Aq :=
∑

s Aq
s.

Ohm’s law is current balance solved for E. For this to give system closure, all two-fluid quantities in Ohm’s
law need to be expressed in terms of one-fluid quantities, and it is necessary to supply a constitutive relation
for Aq. We will do so for the case of a quasineutral two-species plasma with negligible displacement current
and linear collisional drag force.

5.4 Balance of energy

Recall balance of energy for each species:

∂tEs +∇ · (usEs + us · Ps + qs) = Js ·E + ρsus · g +Qs.

Summing over all species gives total energy balance.

Recall the decomposition of the species velocity as us =: u + ws, the sum of the net fluid velocity and the
species diffusion velocity, where

∑
s ρsws = 0. Define Ek′

s := ρsw
2
s/2, the kinetic energy of species s in

the reference frame of the net fluid flow, and define E ′s := Et
s + Ek′

s, the gas-dynamic energy of species s in
the reference frame of the net fluid flow.

We now show that the nonlinear term gives rise to higher-order terms which are naturally absorbed into
the higher-order moment, the heat flux. The total gas-dynamic energy is E :=

∑
s Es. For the nonlinear

flux terms, define q :=
∑

s qs. We compute the nonlinear flux terms:∑
s

usEs +
∑
s

us · Ps +
∑
s

qs

=
∑
s

uEs +
∑
s

wsEs +
∑
s

u · Ps +
∑
s

ws · Ps + q

=uE +
∑
s

ws(Et
s + ρsu

2
s/2) + u · P +

∑
s

ws · Ps + q

=uE +
∑
s

ws (Et
s + ρsw

2
s/2)︸ ︷︷ ︸

E ′
s

+u ·
∑
s

ρswsws︸ ︷︷ ︸
Pd

+ u · P +
∑
s

ws · Ps + q.
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Reordering the terms to absorb the “bad stuff” into the pressure tensor and heat flux, this is

uE + u ·
(
P +

∑
s

ρswsws︸ ︷︷ ︸
Pd

)
︸ ︷︷ ︸

P̃

+
(
q +

∑
s

ws · Ps +
∑
s

ws (Et
s + ρsw

2
s/2)︸ ︷︷ ︸

E ′
s

)
︸ ︷︷ ︸

q̃

.

So we have formulated net energy balance in the familiar form,

∂tE +∇ · (uE + u · P̃ + q̃) = J ·E + ρu · g,

where E :=
∑

s Es is the total gas-dynamic energy, P̃ := P + Pd :=
∑

s Ps +
∑

s ρswsws is the total
thermal and diffusion pressure, and q̃ := q + qd +Wd :=

∑
s qs +

∑
s wsE ′s +

∑
s ws · Ps is the total heat

flux due to thermal diffusion, species diffusion, and work per species.

5.4.1 Conservation of energy

To recast this as a conservation law, we use Ampere’s and Faraday’s laws to recast the opposite of the
source term as the time derivative of something we will call the energy of the magnetic field plus the
divergence of something we will call the electromagnetic energy flux.

−J ·E = (ε0∂tE− µ−1
0 ∇×B) ·E

= ε0∂t(
1
2
E2)− µ−1

0 E · ∇ ×B

= ε0∂t(
1
2
E2)− µ−1

0 (B · ∇ ×E−∇ · (E×B))

= ε0∂t(
1
2
E2) + µ−1

0 ∂t(
1
2
B2) + µ−1

0 ∇ · (E×B)

= ∂t
(
ε0(

1
2
E2) + µ−1

0 (
1
2
B2)︸ ︷︷ ︸

Call E f

)
+∇ ·

( 1
µ0

E×B︸ ︷︷ ︸
Call S

)
.

Writing g = −∇χ, and observing that ρu ·∇χ = ∇ · (ρuχ)−∇ · (ρu)χ = ∇ · (ρuχ) + (∂tρ)χ = ∇ · (u(ρχ) +
∂t(ρχ)− ρ��∂tχ, conservation of energy reads

∂t(E + ρχ) + ∂t
(
ε0E

2/2 +
B2

2µ0

)
+∇ · (u(E + ρχ) + u · P̃ + q̃) +∇ ·

( 1
µ0

E×B
)

= 0. (5.2)

In MHD we neglect ε0E2/2. We will also neglect ρχ.

6 Net fluid balance laws for two species

6.1 Expressing two-fluid quantities in terms of one-fluid quantities

We assume that there are only two species, ions (i) and electrons (e). Assume singly charged ions. We can
express Ji and Je in terms of one-fluid quantities using the definitions of the net first moments, the charge
and mass, J and (ρu):{

J = Ji + Je,
ρu = (ρiui) + (ρeue)

}
, i.e.,

(
J
ρu

)
=
[

1 1
m̃i −m̃e

](
Ji
Je

)
,
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where m̃i := mi
e and m̃e := me

e .

Solving this linear system for Ji and Je gives(
Ji
Je

)
=

1
m̃i + m̃e

[
m̃e 1
m̃i −1

](
J
ρu

)
=
(
m̃/m̃i

m̃/m̃e

)
J +

(
1
−1

)
ρu

m̃i + m̃e
=
(

(m̃/m̃i)(J + ρu/m̃e)
(m̃/m̃e)(J− ρu/m̃i)

)
,

where the reduced mass µ, defined by

µ−1 := m−1
i +m−1

e ≈ m−1
e , i.e., µ =

mime

mi +me
,

is slightly smaller than the mass of an electron, and where m̃ := m
e (so m̃

m̃s
= µ

ms
).

Transforming to the reference frame of the fluid (i.e. expressing in terms of relative velocities via us =
u + ws) and multiplying the momentum equation by e, this becomes{

J′ = J′i + J′e,
0 = m̃iJ′i − m̃eJ′e

}
, i.e.,

(
J′

0

)
=
[

1 1
m̃i −m̃e

](
J′i
J′e

)
,

which has solution(
J′i
J′e

)
=

−1
m̃i + m̃e

[
−m̃e 1
−m̃i 1

](
J′

0

)
=

1
m̃i + m̃e

(
m̃e

m̃i

)
J′ =

(
m̃/m̃i

m̃/m̃e

)
J′.

We could have obtained the current in the rest frame from the current in the fluid frame (or vice versa),
using the fact that Js = J′s + σsu, as follows. We can express σi and σe in terms of one-fluid quantities
using the definitions of the net zeroth moments of the charge and mass, σ and ρ:{

σ = σi + σe,
ρ = ρi + ρe

}
, i.e.,

(
σ
eρ

)
=
[

1 1
m̃i −m̃e

](
σi
σe

)
.

Solving this linear system for σi and σe gives(
σi
σe

)
=

1
m̃i + m̃e

[
m̃e 1
m̃i −1

](
σ
ρ

)
=
(
m̃/m̃i

m̃/m̃e

)
σ +

(
1
−1

)
ρ

m̃i + m̃e
=
(

(m̃/m̃i)(σ + ρ/m̃e)
(m̃/m̃e)(σ − ρ/m̃i)

)
.

In summary,

eniwi = J′i =
m̃

m̃i
(J− σu), −enewe = J′e =

m̃

m̃e
(J− σu),

eniui = Ji =
m̃

m̃i
(J +

ρu
m̃e

), −eneue = Je =
m̃

m̃e
(J− ρu

m̃i
),

eni = σi =
m̃

m̃i
(σ +

ρ

m̃e
), −ene = σe =

m̃

m̃e
(σ − ρ

m̃i
).

Dividing the top two pairs of equations by the bottom pair gives us formulas for the species velocities:

wi =
J′i
σi

=
J− σu
σ + ρ

m̃e

≈ m̃eJ
ρ

if σ ≈ 0, we =
J′e
σe

=
J− σu
σ − ρ

m̃i

≈ −m̃iJ
ρ

if σ ≈ 0,

ui =
Ji
σi

=
J + ρu

m̃e

σ + ρ
m̃e

= u + wi, ue =
Je
σe

=
J + ρu

m̃i

σ + ρ
m̃i

= u + we.

So we have formulas for the zeroth and first moments of each species in terms of two-fluid variables.
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We now substitute to obtain expressions for the coefficients of the Lorentz force law in terms of one-fluid
variables.∑

s

qs
ms

σa =
σi
m̃i

+
σe
m̃e

=
1
m̃i

m̃

m̃i

(
σ +

ρ

m̃e

)
+

1
m̃e

m̃

m̃e

(
σ − ρ

m̃i

)
=
( 1
m̃i
− 1
m̃e

)
σ +

ρ

m̃im̃e
≈ e2n

µ
if σ ≈ 0.

Similarly (by making the replacements σ 7→ J and ρ 7→ ρu),∑
s

qs
ms

Ja =
( 1
m̃i
− 1
m̃e

)
J +

ρu
m̃im̃e

≈ e
( 1
mi
− 1
me

)
J +

e2n

µ
u if σ ≈ 0.

The general expression for the diffusion pressure tensor in terms of 1-fluid quantities doesn’t seem to
simplify to anything nicer, so we compute it here only in the quasineutral case. Since J′ = J− σu, σ ≈ 0,
says that J′ ≈ J. So

Pqd =
∑
s

σswsws =
∑
s

J′sw
′
s ≈

m̃2
e − m̃2

i

m̃i + m̃e

JJ
ρ

=
m̃2
e − m̃2

i

m̃i + m̃e

JJ
ρ

= (m̃e − m̃i)
JJ
ρ
, u −JJ

ne
if me � mi.

Finally, we derive a constitutive relation for the resistance, i.e., the rate of production of current due to
collisions. Assume that there are no collisions which annihilate either species. So Ss = 0, and As = Rs.
So Aq =

∑
s Rq

s =
∑

s

∑
p 6=s

qs
ms
νspnsnp(up − us) = −nineνie( qimi −

qe
me

)(ui − ue). Assuming singly charged
ions,

Aq = −enineνei
µ

(ui − ue) = −µ−1νei(neJi + niJe). (6.1)

So in the case of quasineutrality (ni ≈ ne ≈ (ni + ne)/2 =: n),

Aq ≈ −nνei
µ

J.

The negative sign indicates that the resistive drag acts to decrease the magnitude on the current, as
expected.

6.2 Ohm’s law: Current balance expressed in terms of one-fluid quantities

So the assumption of quasineutrality yields the generalized Ohm’s law,

∂tJ +∇ ·
(
Ju + uJ +

(me −mi

mi +me

)JJ
ne

)
+∇ · Pq =

e2n

µ

(
E + u×B

)
+ e
( 1
mi
− 1
me

)
J×B− nνei

µ
J.

where recall that Pq := e
(

Pi
mi

+ Pe
me

)
. Solving for E gives

E = B× u +
ν

e2
J +

µ

en

( 1
me
− 1
mi

)
J×B︸ ︷︷ ︸

Hall term

+
µ

e2n

[
∇ · Pq + ∂tJ +∇ ·

(
Ju + uJ +

(me −mi

mi +me

)JJ
ne

)]
. (6.2)
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Assuming negligible electron mass (me � mi) yields:

E = B× u +
ν

e2
J +

1
en

J×B− 1
en
∇ · Pe +

me

e2n

[
∂tJ +∇ · (Ju + uJ− JJ

ne
)
]
. (6.3)

But in the case of an electron-positron pair plasma (me = mi = 2µ),

E = B× u +
ν

e2
J +

1
2en
∇ · (Pi − Pe) +

µ

e2n

[
∂tJ +∇ ·

(
Ju + uJ

)]
.

6.3 Balance of momentum for two species

Assuming two species allows us to write out the total diffusion pressure tensor in terms of bulk quantities.
For simplicity we assume quasineutrality. Then

wi −we =
J
ne
.

Also from quasineutrality,

wi =
µ

mi

J
en
, i.e., ρiwi =

µ

e
J, and

we = − µ

me

J
en
, i.e., ρewe = −µ

e
J.

So

Pd =
∑
s

ρswsws =
µ

e
J(wi −we)

=
µ

e2n
JJ.

So momentum equation (5.1) is

δ̄t(ρu) +∇ · P +∇ ·
( µ

e2n
JJ
)

+∇ · µ−1
0

(
IB2/2−BB

)
+∇χ = 0.

(Generally JJ is neglected as a second-order term.)

7 Mapping between MHD and 2-fluid variables

The mapping from 2-fluid to 1-fluid variables is straightforward. For conserved variables:

ρ = ρi + ρe

(ρu) = (ρu)i + (ρu)e
E = Ei + Ee
B = B

Also,

P u Pi + Pe,
J u µ−1

0 ∇×B.
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Since the mapping from 2-fluid to 1-fluid variables is not one-to-one, the mapping from 1-fluid to 2-fluid
variables requires auxiliary information or assumptions. The four specific things that we must specify are
(1) the ratio of particle number densities (i.e. quasineutrality) and (2) the ratio of temperatures between
the two species, and constitutive relations for the (3) current (typically by neglect of displacement current)
and (4) electric field (using some form of Ohm’s law).

The MHD assumption of quasineutrality says that the ratio of particle number densities is one. So the
contribution of each species to the density is:

n = ρ/(mi +me),

ρi =
mi

mi +me
ρ,

ρe =
me

mi +me
ρ,

The MHD magnetostatic assumption gives the current:

J = µ−1
0 ∇×B.

Combining this with quasineutrality gives the current and thus the velocity of each species:

Ji =
me

mi +me
J,

Je =
mi

mi +me
J,

wi = Ji/(ne) = m̃eJ/ρ,

we = −Je/(ne) = −m̃iJ/ρ,

ui = u + wi,

ue = u + we,

Assuming scalar pressure, combining the ideal gas laws ps = ns(kTs) with quasineutrality (ns = n), and
using p = pi + pe gives the contribution of each species to the pressure:

pi = p
Ti

Ti + Te
, pe = p

Te
Ti + Te

.

For conservation of energy we need E = Ei + Ee. The constitutive relations

Ei =
αi
2
pi + ρiu

2
i /2, (7.1)

Ee =
αe
2
pe + ρeu

2
e/2, (7.2)

where αs is the number of energy modes of species s (αs = 3 for purely translational modes, e.g. for
electrons and protons), add to give the net constitutive relation

E =
αMHD

2
p+ ρu2/2 + m̃im̃e

J2

2ρ
,

where αMHD, the effective number of degrees of freedom of the MHD system, is determined by the require-
ments that

pMHD = pi + pe and αMHDpMHD = αipi + αepe.
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Dividing these equations, we can deduce that the effective number of degrees of freedom of the MHD
system is the average of the number of degrees of freedom of each component, weighted according to the
ratio of pressures (or thermal energy densities, or temperatures in the quasineutral case):

αMHD =
αipi + αepe
pi + pe

≈ αiTi + αeTe
Ti + Te

In summary, the more correct MHD constitutive relation

E =
αMHD

2
p+ ρu2/2 + m̃im̃e

J2

2ρ
,

αMHD ≈
αiTi + αeTe
Ti + Te

fails to agree with the constitutive relation that we use for MHD,

E =
αMHD

2
pMHD + ρu2/2,

unless we incorporate the diffusion kinetic energy into the pressure:

pMHD := p+
2

αMHD
m̃im̃e

J2

2ρ
.

We use the following procedure to obtain the energies and pressures:

1. Compute the kinetic energy of each species and add to get the total species kinetic energy. If this
exceeds the total MHD kinetic energy, then it will not be possible to satisfy energy conservation with-
out modifying the diffusion velocities we computed (on the assumption of the pre-Maxwell Ampere’s
law and quasineutrality).

Ek
species := (1/2)[ρiu2

i + ρeu
2
e]; EMHD = (αMHD/2)pMHD + ρu2/2.

2. Subtract the total species kinetic energy from the total gas energy to get the total species thermal
energy.

Et
species = EMHD − Ek

species

3. Split the total species thermal energy using the ratio of temperatures (and, more generally, of the
gas constants, if they differ) of the two species.

Et
i =

αiTi
αiTi + αeTe

Et
species; pi = (2/αi)Et

i ;

Et
e =

αeTe
αiTi + αeTe

Et
species; pe = (2/αe)Et

e.

Finally, the electric field is supplied by Ohm’s law (6.2):

E = ηJ + B× u +
m̃i − m̃e

ρ
J×B +

1
ρ
∇ · (m̃ePi − m̃iPe) +

m̃im̃e

ρ

(
∂tJ +∇ ·

(
uJ + Ju +

m̃e − m̃i

ρ
JJ
))
.

15


