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1 Introduction

This document derives MHD starting with a generic two-fluid system of evolution equations for
mass density, momentum, energy, and electromagnetic field.

MHD models are characterized by their use of Ohm’s law to specify the electric field. The following
basic assumptions underlie MHD models:

1. neglect of displacement current,

2. quasineutrality,

3. neglect of second-order gas-dynamic terms that arise from interspecies drift velocities (my
carefulness to avoid this assumption below leads to complicated source terms that are usually
neglected), and

4. the typical gas-dynamic constitutive assumptions, e.g. closure relations for the stress tensor
and heat flux.

2 Presentation of the two-fluid equations

Generic two-fluid equations for a two-species plasma are:

∂t



ρi
ρe
ρiui
ρeue
Ei
Ee

+∇ ·



ρiui
ρeue

ρiuiui + Pi
ρeueue + Pe

uiEi + ui · Pi + qi
ueEe + ue · Pe + qe

 =
1

r



0
0

σiE + Ji ×B
σeE + Je ×B

Ji ·E
Je ·E

+



0
0
Ri

Re

Ri · ui +QR,i +Qi
Re · ue +QR,e +Qe

 ,

∂t

[
(cB)
E

]
+ c∇×

[
E

−(cB)

]
=

1

r

[
0

−J/λ2

]
, and ∇ ·

[
(cB)
E

]
=

1

r

[
0

σ/λ2

]
.

The variables are defined as follows: B is magnetic field, E is electric field, c is the speed of light,
and i and e are ion and electron species indices; for species s ∈ {i, e}, qs is particle charge, ms

is particle mass, ns is particle number density, ρs = msns is mass density, σs = qsns is charge
density, Js = usσs is current density, Ps is the pressure tensor, Es is gas-dynamic energy, qs is
the heat flux, Ri = −Re denotes the interspecies drag force on the ions, QR,s denotes heating due
to friction (drag), and Qi = −Qe denotes the interspecies thermal heat transfer to the ions. The
scaling of the interspecies drag force and heat transfer are not considered here. We assume singly
charged ions: qi = −qe =: e. In case one wishes to view all equations using standard dimensions,
take r = 1 and take λ2 = ε0, the permittivity of free space. The parameters r and λ are present
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so that this derivation will apply also for a nondimensionalization of these equations. For the
nondimensionalized case, r = m0u0

q0B0x0
is the nondimensionalized gyroradius of a typical ion in the

presence of a typical magnetic field over a typical length scale, and λ2 =
ε0B2

0
n0m0

defines λ, the ratio
of the Debye length to the gyroradius. The Debye length is the charge-shielding distance for an
ion in a plasma of typical density and temperature. We will generically denote µ−1

0 := c2λ2 (and
likewise redefine ε0 := rλ2). The parameters that determine the behavior of the plasma are c, λ, r,
and the mass ratio m := mi/me u 1836 (hidden in the definition of net current, manifest in Ohm’s
law below).

In the collisionless ideal two-fluid model, we neglect the heat fluxes qs and the transfer terms, i.e.,
Ri ≈ 0 ≈ Re, Qi ≈ 0 ≈ Qe, and QR,i ≈ 0 ≈ QR,e. We also assume that pressure is scalar, i.e., the
pressure tensor is isotropic. Recall that for point particle species, which only have the 3 translational
degrees of freedom, the thermal energy is one half the trace of the pressure tensor. This yields the
ideal gas constitutive relation which serves to specify the pressure: Es = (3/2)ps + ρsu

2
s/2.

More general constitutive relations could involve assuming that the heat flux is proportional to
the temperature gradient, that the interspecies drag force is proportional to the species densities
and relative velocities, that the interspecies heat transfer is proportional to the species densities
and difference in temperature, that there are distinct scalar pressures parallel and perpendicular to
the magnetic field, or that the pressure tensor has a viscous component that depends linearly and
isotropically on the velocity gradient.

3 Quasineutrality and the one-fluid model

Summing the density, momentum, and energy equations over both species yields net fluid balance
laws, and summing the constitutive relations for the pressure yields a net constitutive relation:

∂t

 ρρu
E

+∇ ·

 ρu
ρuu + Pd + P

uE + u · P + qd + q

 =
1

r

 0
σE + J×B

J ·E

 and

E = (3/2)p+ ρu2/2,

where the density ρ, momentum ρu, energy E , pressure tensor P, charge density σ, current density
J, and heat flux q are the sum of their respective ion and electron quantities. (So (ρu) := ρiui+ρeue
defines the net velocity u.) To deal with the nonlinear flux terms in the momentum and energy
equations, we here have defined the diffusion velocities ws relative to the fluid velocity by ui = u+wi

and ue = u + we. Here the diffusion pressure and diffusion heat flux are defined by

Pd := ρiwiwi + ρewewe,

qd :=
∑
s

(wsEs + ws · Ps).

(We use the word “diffusion” here to refer to two fluid species diffusing through one another, rather
than thermal particle motion diffusing their properties through a medium. In terms of partial
differential equations, I’m thinking that relative motion of fluid species is dispersive or diffusive
depending on the quantities being convected, but I’m not completely sure.)
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The fundamental assumption of one-fluid models is quasineutrality : σ ≈ 0. This assumption is
appropriate on space scales greater than the Debye length, which is the length scale over which
electric fields are screened out by a redistribution of the electrons. Quasineutrality means that ion
and electron particle densities are approximately equal: ni ≈ ne ≈ n := (ni + ne)/2. So the net
current is the same in any reference frame. Since we can also say that the net momentum is zero
in a reference frame moving with the fluid, we have the system:

J/(en) = wi −we,

0 =miwi+mewe.

Solving for diffusion velocities yields

wi =
me

mi +me

J

en
=
m̃eJ

ρ
, where m̃e :=

me

e
, and

we =
−mi

mi +me

J

en
= −m̃iJ

ρ
, where m̃i :=

mi

e
. (3.1)

So the assumption of quasineutrality allows us to express ρs and ws (equivalently, us) in terms of
one-fluid quantities. One typically assumes the constitutive relation Ri = νn2(we − wi), where
ν ≥ 0 is a proportionality constant. So we have left to eliminate the species quantities Ps and
Es. Recall that 2Es = tracePs + ρsu

2
s, and consequently 2E = traceP + ρu2 + ρiw

2
i + ρew

2
e .

(Nontranslational degrees of freedom require the addition of another thermal energy term on the
right hand side in addition to the trace of the pressure tensor.) So the closure problem reduces to
finding a constitutive relation for the ion and electron pressure tensors. The simplest approach is
just to neglect all the terms above involving diffusion velocity. The second simplest approach is
to assume that the electron and ion temperature are in a fixed ratio (which, for the ideal gas law
ps = ns(kTs), under the quasineutrality assumption ni = ne, means that the pressures are in the
same fixed ratio, e.g. 1.) A more complicated approach is to retain separate evolution equations
for the energy, temperature, or pressure of each individual species. (This works because for a
quasineutral fluid n, ρs, us, and Js = nqsus are all known in terms of ρ, u, and J.)

We now determine the “diffusion” quantities explicitly in terms of one-fluid variables.

The diffusion pressure tensor is

Pd = ρiwiwi + ρewewe =
m̃i

m̃i + m̃e

m̃2
eJJ

ρ
+

m̃e

m̃i + m̃e

m̃2
iJJ

ρ
= m̃im̃e

JJ

ρ
. (3.2)

Using the same kind of derivation (or using that the diffusion kinetic energy is half the trace of the
diffusion pressure tensor) gives the “diffusion” scalar pressure,

3

2
pd :=

1

2
[ρiw

2
i + ρew

2
e ] = m̃im̃e

J2

2ρ
. (3.3)

The “diffusive” heat flux tensor is

qd =
∑
s

(wsEs + ws · Ps) =
∑
s

(ws(
1

2
ρsu

2
s +

3

2
ps + ps)−ws · Ts)

= m̃J(u2
i − u2

e)/2 +
5

2

J

ρ
(m̃epi − m̃ipe)−

J

ρ
· (m̃eTi − m̃iTe),
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where m̃ := m̃em̃i
m̃e+m̃i

is the reduced mass. But

m̃J(u2
i − u2

e)/2 = m̃J(ui − ue) ·
ui + ue

2

= m̃J(wi −we) ·
(
u +

wi + we

2

)
= m̃im̃e

JJ

ρ
·
(
u +

wi + we

2

)
= m̃im̃e

JJ

ρ
·
(
u +

m̃e − m̃i

2

J

ρ

)
.

Notice that we get the diffusion pressure dot the average velocity. So

qd = m̃im̃e
JJ

ρ
·
(
u +

m̃e − m̃i

2

J

ρ

)
+

5

2

J

ρ
(m̃epi − m̃ipe)−

J

ρ
· (m̃eTi − m̃iTe).

Assuming that the drag force is proportional to the interspecies velocity gives:

Ri = −Re = νn2(we −wi) = −νn2(m̃e + m̃i)J/ρ = −νnJ/e.

3.1 Interspecies diffusive energy exchange

Quasineutrality also allows us to derive some simple expressions for interspecies energy exchange.
(These effects cancel when the energy equations are summed for both species.) The rate of work
due to the drag force is:

Ri · (wi −we) = −νnJ
e
· J
en

=
−ν
e2
J2.

This represents energy dissipated in the form of frictional heating. As in [?], p45, we posit that
the frictional heating is distributed inversely as the particle masses, based on the observation that
in a grazing collision conservation of momentum says that the perturbation in kinetic energy is
distributed inversely as the particle masses.

4 The “magnetostatic” assumption

The magnetohydrodynamic (MHD) plasma model adds to the one-fluid model a second fundamental
assumption (which I’ll refer to as the “magnetostatic assumption”) which assumes that ∂tE can be
neglected in Ampere’s law. This assumption removes light waves from the system, which maybe
is appropriate on space scales greater than the plasma skin depth, which I think is the depth in a
plasma to which electromagnetic radiation can penetrate [CHECK]. This magnetostatic assumption
allows us to eliminate the current by expressing it in terms of the magnetic field.

4.1 Ohm’s law

Since magnetostatics neglects ∂tE, the electric field in the source terms needs to be supplied by a
constitutive relation called Ohm’s law. Recall from elementary physics that Ohm’s law specifies the
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electric field (equivalently, the voltage gradient) in a resistor induced by a given current. Similarly,
Ohm’s law in the plasma context specifies the electric field induced by the state variables of the
plasma. Ohm’s law is simply the current balance equation solved for the electric field and expressed
in terms of of one-fluid variables.

The Ohm’s law we derive here assumes quasineutrality. (One can obtain a more general Ohm’s law.)
Although Ohm’s law does not assume magnetostatics, it is not very useful unless this assumption
is made. On the basis of the quasineutrality assumption alone, Ohm’s law gives an evolution
equation for the current. Such a system is hardly worthy to be called a simplification of the two-
fluid equations, since we accomplish a very small reduction in the number of equations (strictly
speaking, quasineutrality only allows us to combine the density evolution equations for each species)
in exchange for a system that involves many more terms.

With the magnetostatic assumption, J = µ−1
0 ∇ × B, not only can we eliminate the current, but

Ohm’s law gives us a constitutive relation that allows us to eliminate the electric field E by ex-
pressing it in terms of other variables.

Multiplying the momentum evolution equations for each species by its charge to mass ratio gives a
pair of evolution equations for the current of each species:

∂t

[
Ji
Je

]
+∇ ·

[
Jiui + m̃−1

i Pi
Jeue − m̃−1

e Pe

]
=

1

r

[
m̃−1
i σi(E + ui ×B)

−m̃−1
e σe(E + ue ×B)

]
+

[
m̃−1
i Ri

−m̃−1
e Re

]
,

Adding these equations will give an evolution equation for the net current. We will invoke quasineu-
trality, −σe ≈ σi ≈ ne = ρ/(m̃i+ m̃e). Define J′s := σsws. So Js := σsu+J′s and

∑
s J
′
s = J. Then∑

s Jsus =
∑

s σsus(u + ws) = Ju +
∑

s σsusws = Ju + uJ +
∑

s σswsws. So the sum is

∂tJ +∇ ·
(
Ju + uJ + σiwiwi + σewewe + m̃−1

i Pi − m̃−1
e Pe

)
=

ρ

rm̃im̃e
(E + u×B + (wi + we)×B) + (m̃−1

i + m̃−1
e )Ri.

Recalling that wi = m̃eJ/ρ and we = m̃iJ/ρ and recalling the approximate constitutive relation
for the drag force Ri = −νnJ/e, this becomes

∂tJ +∇ ·
(
uJ + Ju + (m̃e − m̃i)JJ/ρ+ m̃−1

i Pi − m̃−1
e Pe

)
=

ρ

rm̃im̃e
(E + u×B +−(m̃i − m̃e)J×B/ρ− rνJ/e2).

Solving for the electric field gives:

E =
rν

e2
J + B× u +

m̃i − m̃e

ρ
J×B +

r

ρ
∇ · (m̃ePi − m̃iPe) +

rm̃im̃e

ρ

(
∂tJ +∇ ·

(
uJ + Ju +

m̃e − m̃i

ρ
JJ
))
.

5 Conservation form

We assume σ ≈ 0 for simplicity in the following development.

To put energy balance in conservation form, we use Ampere’s law to eliminate the current and
rewrite minus the source term as the time derivative of something we call magnetic energy plus the
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divergence of something called the Poynting vector, which we regard as the flux of electromagnetic
energy.

−(J/r) ·E = −µ−1
0 (∇×B) ·E

= −µ−1
0 (−∇ · (E×B) + B · ∇ ×E)

= −µ−1
0 (−∇ · (E×B)−B · ∂tB)

= µ−1
0 [∇ · (E×B) + ∂tB

2/2].

To put momentum balance in conservation form, we use Ampere’s law to eliminate the current
from minus the momentum source term and rewrite it as the divergence of something we call the
magnetic pressure tensor (i.e. flux of magnetic momentum):

−(J/r)×B = −µ−1
0 (∇×B)×B

= −µ−1
0 (B · ∇B− (∇B) ·B)

= µ−1
0 ∇ · (IB

2/2−BB).

We can now write the MHD equations in conservation form:

∂t

 ρρu
Ẽ

+∇ ·

 ρu

ρuu + m̃em̃iJJ/ρ+ P + µ−1
0 (IB2/2−BB)

uE + u · P +
∑

s(wsEs + ws · Ps) + q + µ−1
0 E×B

 = 0 and

∂tB +∇×E = 0,

where Ẽ := E + µ−1
0 B2/2 is the total energy, and we recall that µ−1

0 = c2λ2r.

6 MHD equations: hyperbolic flux form

For numerical shock-capturing purposes, we decompose the flux as the sum of a function of non-
differentiated state variables (which we will call the hyperbolic flux, since it turns out to have real
eigenvalues and a full set of eigenvectors) and a function of differentiated state variables. For this
purpose we write Ohm’s law as E = B × u + E′, where E′ denotes Ohm’s law in the reference
frame of the fluid. Substituting Ohm’s law into Faraday’s law (i.e., taking the curl of Ohm’s law)
identifies the hyperbolic flux of magnetic field: ∇× (B× u) = ∇ · (uB−Bu). So:

∂t


ρ
ρu

Ẽ
B

+∇ ·


ρu

ρuu + Ip̃MHD − µ−1
0 (BB)

u(Ẽ + p̃MHD)− µ−1
0 BB · u

uB−Bu

 = ∇ ·


0

(m̃em̃i/ρ)(IJ2/3− JJ)

um̃em̃iJ
2/(3ρ)− qd

disp − µ
−1
0 Edisp ×B

ε ·Edisp



+∇ ·


0
T

u · T− q− qd
diff − µ

−1
0 Ediff ×B

ε ·Ediff

 ,
where T is the viscous stress tensor (which is typically assumed to depend linearly and isotropically
on the symmetric part of the velocity gradient), and q = −K∇T is the heat flux. Here Ẽ =

6



E + µ−1
0 B2/2, E = (3/2)p + (1/2)ρu2, p̃MHD = p + µ−1

0 B2/2 is the total pressure, J = µ−1
0 ∇×B,

wi = m̃eJ/ρ, we = −m̃iJ/ρ, and E′ = Ediff + Edisp, where

Ediff = rνJ− r

ρ
∇ · (m̃eTi − m̃iTe),

Edisp =
m̃i − m̃e

ρ
J×B +

r

ρ
∇(m̃epi − m̃ipe) +

rm̃im̃e

ρ

(
∂tJ +∇ ·

(
uJ + Ju +

m̃e − m̃i

ρ
JJ
))
.

So

qd
diff = −J

ρ
· (m̃eTi − m̃iTe),

qd
disp = m̃im̃e

JJ

ρ
· (u +

m̃e − m̃i

2

J

ρ
) +

5

2

J

ρ
(m̃epi − m̃ipe)

I’m not confident in how I’ve separated out the differentiated source terms into diffusive terms
and dispersive terms. I’m making the assumption (true?) that if we start our derivation from a
collisionless ideal two-fluid model all terms in the resulting one-fluid model will be dispersive, and
that all terms in our model that come from diffusive terms in the two-fluid model are diffusive.1

Observe that the only place where the gyroradius r appears in the MHD equations is implicitly
in the E′ terms of Ohm’s law. It looks like a small gyroradius gives us E′ = rνJ + m̃i−m̃e

ρ J × B,
giving Hall MHD. A large ρ seems to eliminate the remaining dispersive terms, including the J×B
Hall term, and implies that the ws can be neglected. The collisionless assumption eliminates the
diffusive terms such as the resistivity term rνJ and should eliminate the viscous stress tensor.

Shocks can develop when the hyperbolic flux dominates the nonhyperbolic flux; putting our equa-
tions in hyperbolic conservative flux form helps us write numerical methods that resolve computed
shocks sharply and propagate them at the correct speeds.
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1To determine whether this assumption is true it would apparently be necessary to close this system by specifying
(or neglecting) the pressure term. I would expect the diffusive terms to produce entropy while I would expect the
dispersive terms not to produce entropy, based on the fact that they arise from terms in the Boltzmann (or two-fluid)
model which do or do not generate entropy accordingly. Fluid entropy can be defined by assuming the form of
the velocity distribution (Maxwellian) and then integrating the entropy over velocity space. The Vlasov equation
conserves entropy; this leads to the fact that moments of the Vlasov equation also conserve entropy. So it would
seem that averages of these moments (the one-fluid model) should also conserve entropy. Scalar pressure assumes no
viscosity. Fluid-dynamic entropy evolution is usually derived from thermal energy (i.e. pressure) evolution, which
is obtained by subtracting kinetic energy evolution from energy evolution. I need to do this for extended MHD as I
have done for two-fluid gas dynamics e.g. in my note on the ten moment closure.
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