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The Relativistic Vlasov Equation
by Alec Johnson, January 2011

I. Recitation of basic electrodynamics

A. Classical electrodynamics

Classical electrodynamics is governed by Newton’s sec-
ond law (for particle motion),

mpdtvp = Fp, vp := dtxp,

(where p is particle index, t is time, mp is particle mass,
xp(t) is particle position, and Fp(t) is the force on the
particle), the Lorentz force law,

Fp = qp (E + v ×B)

(where E(t,x) = electric field, B(t,x) = magnetic field,
and qp is particle charge), and Maxwell’s equations,

∂tB +∇×E = 0, ∇ ·B = 0,

∂tE− c2∇×B = −J/ε, ∇ ·E = σ/ε,

with current and charge density given by

J :=
∑

p

qpvpδxp
, σ :=

∑
p

qpδxp
,

where c is light speed, ε0 is electric permittivity, J is net
current density, σ is net charge density, δxp(t,x) := δ(x−
xp(t)) is the particle density function, and δ is the Dirac
delta function (unit spike).

B. Relativistic electrodynamics

Newton’s second law is invariant under Galilean transfor-
mations, but Maxwell’s equations are not (because they
imply the existence of a light speed c).

Einstein (and previously Lorentz) characterized the set of
affine coordinate transformations, called Lorentz transfor-
mations, which leave light speed constant and which satisfy
the property that if system A has velocity v in system B
then system B has velocity −v in system A.

Einstein then modified the laws of electrodynamics to make
them Lorentz-invariant. To do so we replace velocity with
proper velocity in Newton’s second law. So the laws of
relativistic electrodynamics are:

Newton’s second law,

mpdtpp = Fp, vp := dtxp,

the Lorentz force law,

Fp = qp (E + v ×B) ,

and Maxwell’s equations,

∂tB +∇×E = 0, ∇ ·B = 0,

∂tE− c2∇×B = −J/ε, ∇ ·E = σ/ε,

with current and charge density given by

J =
∑

p

qpvpδxp
σ =

∑
p

qpδxp

=
∑

p

qppp

δxp

γp
, =

∑
p

qpγp

δxp

γp
;

here pp (i.e. γpvp) is the proper velocity, where γp is the
rate at which time t elapses with respect to the proper time
τp of a clock moving with particle p. Dropping the particle
index,

γ := dτ t, and

p := dτx = (dτ t)dtx = γv.

A concrete expression relating γ to (proper) velocity is

γ2 = 1 + (p/c)2, i.e. (dividing by γ2),

1 = γ−2 + (v/c)2, i.e. (solving for γ),

γ =
(
1− (v/c)2

)−1/2
.

II. Vlasov equation

The Vlasov equation asserts that particles are conserved
in phase space and that the only force acting on particles
is the electromagnetic force.

The Vlasov equation writes

∂tfs +∇x · (vfs) +∇p · (asfs) = 0, (1)

where fs(t,x,p) is the particle density function of species s
and as = dtp = (qs/ms)(E+v×B) is particle acceleration
and we recall that v = dtx is velocity and p = γv is proper
velocity.

The Maxwell source terms are provided by the relations

J =
∑

s

qs

∫
fsvdp σ :=

∑
s

qs

∫
fsdp

=
∑

s

qs

∫
fsp

dp

γ
, =

∑
s

qs

∫
fsγ

dp

γ
.

If we regard fs as a linear superposition of spike functions
then the Vlasov system (1) with Maxwell’s equations is
equivalent to the fundamental equations of electrodynam-
ics written in terms of individual particles.

A. Lorentz-invariant form

1. fs is a scalar.

(In this section without loss of generality we take c = 1.)
The particle density function fs(t,x,p) is a scalar. This
means that it remains invariant under the transforma-
tion of phase space that is implied by a Lorentz trans-
formation (i.e. a relativistic inertial transformation). It
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takes a little work to see this. By definition, the quantity
dfs := fs(t,x,p)d3x ∧ d3p counts the number of particles
in a region (x0 +d3x,p0 +d3p) in phase space. (Note that
d3x∧ d3p denotes an infinitesimal surface of simultaneous
points in (t,x,p)-space.) We argue that dfs is a scalar,
then argue that d3x ∧ d3p is a scalar, and then conclude
that fs is a scalar. The essence of the argument is to con-
sider a Lorentz boost which transforms into the reference
frame of d3x∧d3p (i.e. which transforms p0 +d3p to d3p′,
so that the transformed range of velocities is centered on
zero).

To see that such a boost leaves dfs invariant, consider
the particle event paths (“world lines”) that intersect
d3x ∧ d3p. The transformed region of phase space will
be intersected by exactly the same particles. Although
the transformed region of phase space is not simultane-
ous, orthogonal projection to make it simultaneous does
not change the number of particles intersecting it because
their velocity is approximately zero.

To see that the same boost leaves d3x ∧ d3p invariant,
note that orthogonality of d3x and d3p is invariant under
the boost, that the simultaneous region d3x is mapped
to a (nonsimultaneous) region of size γ0d3x (where γ0 is
computed from the boost velocity), and that d3p is shrunk
by a factor of γ because it is transformed to a region where
dγ = 0 (because γdγ = p · dp (because γ2 = 1 + p · p)
and p′0 = 0 post-transformation). Again, projecting onto
simultaneous points does not change d3x. In summary,
we have argued that γ0d3x and d3p/γ0 are scalars, and
therefore their product d3x ∧ d3p is a scalar.

2. Lorentz-invariant form

Observe that ∂tfs +∇x · (vfs) = ∂xµ(vµfs), which would
be Lorentz-invariant if we replaced vµ with γvµ = pµ.
This indicates that to put the Vlasov equation (1) in a
manifestly Lorentz-invariant form we need to multiply it
by γ. Then we have

∂xµ(pµfs) + γ∇pk(aks fs) = 0;

the first term is manifestly Lorentz-invariant; for the sec-
ond term we rewrite ∇pk in terms of derivatives with re-

spect to the four-vector pµ by regarding γ = p0 and pk as
independent quantities (that is, we extend the definition of
all quantities (arbitrarily) beyond the quadratic manifold
γ2 = 1 + p2). Then the chain rule for partial derivatives
says

∂pk 7→
∂γ

∂pk
∂γ + ∂pk =

pk

γ
∂γ + ∂pk ,

so

γ∇pk(aks fs) 7→ γ

(
pk

γ
∂γ(aks fs) +∇pk(aks fs)

)
.

Let ãs := dτp = γas be the proper acceleration. Then
p · ã = p · dτp = γdτγ = γã0, that is, p · as = ã0, so the
acceleration term can indeed be cast into the form appear-
ing in the following manifestly Lorentz-invariant version of
the Vlasov equation,

∂xµ(pµfs) + ∂pµ(ãµs fs) = 0;

This confirms that the Vlasov equation (1) is indeed phys-
ical and Lorentz-invariant.

B. Moments

Let χ(p) be a generic moment to evaluate:∫
p

χ
(
∂xµ(pµfs) + γ∇pk(aks fs) = Cs

)d3p

γ
.

Integrate by parts to get

∂xµ
(∫

p

χpµfs
d3p

γ

)
=

∫
p

fsã
k
s

(
∇pkχ

) d3p

γ
+

∫
p

Csχ
d3p

γ
.

Use p⊗n := ⊗np to denote the nth tensor power. In
case χ = p⊗n = Sym (p⊗n), we have (at least for spa-
tial indices, and then by tensoriality of the expression for
temporal indices as well): ãks∇pkχ = nSym (p⊗n−1ãs) =
qs
ms
nSym (F •p⊗n), where I adopt the notation (F •p)µ =

Fµνpν and use that ãs = qs
ms
F •p, where F is the electro-

magnetic four-tensor with components

Fµν :=

[
0 −ET /c

E/c B× I

]
.

So for χ = p⊗n (n ≥ 1) we have

∂xµ
(∫

p

fsp
⊗npµ

d3p

γ

)
=
qs

ms
nSym

(
F •

∫
p

fsp
⊗n d3p

γ

)
+

∫
p

Csp
⊗n d3p

γ
.

For χ = 1 we get balance of particle four-flow:

∂xµ
(∫

p

pµfs
d3p

γ

)
=

∫
p

Cs
d3p

γ
.

Separating time and space derivatives,

∂ct

(∫
p

fs

)
+∇ ·

(∫
p

fsv
)

=

∫
p

Cs
d3p

γ
.

More generally, for χ = p⊗n, separating time and space
derivatives reveals a moment hierarchy:

∂ct

∫
p

fsχ+∇·
∫
p

fsvχ

=
qs

ms
nSym

(
F •

∫
p

fs
χ

γ

)
+

∫
p

Cs
χ

γ
.

Explicitly, omitting the collision term, the moment hierar-
chy is:

χ :∂ct

∫
p

fsχ+∇·
∫
p

fsvχ =
qs
ms

nSym
(
F •

∫
p

fs
χ

γ

)
1 : ∂ct

(∫
p

fs
)
+∇·

(∫
p

fsv
)
= 0,

p : ∂ct

∫
p

fsp+∇·
∫
p

fsvp =
qs
ms

(
F •

∫
p

fsv
)
,

pp : ∂ct

∫
p

fspp+∇·
∫
p

fsvpp =
qs
ms

2 Sym
(
F •

∫
p

fsvp
)
,

. . .
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Note that (1) the evolved moments are not tensorial (be-

cause dp
γ , not dp, is tensorial) and (2) the fluxes are not

identical to the evolved moments (so closures are neces-

sary for all the flux moments and not just the highest flux
moment).

To separate space and time components of vectors, use that
v = (1, v) and that p = (γ, p); then the moment hierarchy
is:

p⊗n : ∂ct
∫
p
p⊗nfs +∇ ·

∫
p
vp⊗nfs = qs

ms
n Sym

(
c−1E

∫
p
p⊗n−1fs +

∫
p
vp⊗n−1fs ×B

)
γp⊗n−1 : ∂ct

∫
p
γp⊗n−1fs +∇ ·

∫
p
p⊗nfs = qs

ms
nSym

(
c−1E ·

∫
p
vp⊗n−1fs

)
1 : ∂ct

∫
p
fs +∇·

∫
p
vfs = 0,

p : ∂ct
∫
p
pfs +∇·

∫
p
vpfs = qs

ms

(
c−1E

∫
p
fs +

∫
p
vfs ×B

)
,

γ : ∂ct
∫
p
γfs +∇·

∫
p
pfs = qs

ms
c−1E ·

∫
p
vfs,

pp : ∂ct
∫
p
fspp+∇·

∫
p
fsvpp = qs

ms
2 Sym

(
c−1E ·

∫
p
p +

∫
p
vpfs ×B

)
,

γp : ∂ct
∫
p
γpfs +∇ ·

∫
p
ppfs = qs

ms
2 Sym

(
c−1E ·

∫
p
vpfs

)
. . .

C. Moment closure

For this section, assume that c = 1. For isotropic gas
dynamics, one posits that there exists a reference frame
in which the distribution fs is isotropic. In this reference
frame, the invariant flux tensor for χ = 1 has a single
nonzero component:

∫
p
[1, v]fs = [ρ, 0]

and the invariant flux tensor for χ = p is diagonal:

∫
p

[
γ p
p vp

]
fs =

[
E 0
0 IP

]
;

the pressure P is related to the energy E and density ρ
by an equation of state that is determined by the assumed
distribution of particle velocities; usually the assumed dis-
tribution is defined to maximize some notion of entropy.
To see how the assumed distribution relates pressure to
energy, observe that pressure as well as energy is given by
integrating the assumed distribution against a function of
γ:

∫
p
vpfs = I

∫
p
γ−1ppfs

= I
∫
p
γ−1 1

3 |p|
2fs

= I
∫
p

γ2 − 1

3γ
fs.

Moveover, by scalability in ρ, the equation of state reduces

to a function of a single variable: Pρ = P̃(Eρ ).

Determining values of ρ, E , and the three velocity compo-
nents of the Lorentz boost so as to match the five evolved
moments is a nonlinear problem that is usually solved it-
eratively.
To determine the form of this system, we apply a Lorentz
boost Λ that transforms from quantities in the reference
frame of the fluid to a laboratory frame moving at proper
velocity U

Λ =

[
Γ U

U I + UU
Γ+1

]
,

where Γ2 = 1 + |U |2.

Applying this boost to the tensor for the density and flux
of mass says that

Λ ·
[
ρ
0

]
=

[
Γρ
Uρ

]
, i.e.,

ρ′ = Γρ,

where ρ′ is mass density in laboratory coordinates.

Applying this boost to the tensor for the density and flux
of energy and momentum says that

Λ ·
[
E 0
0 IP

]
; ·Λ =

[
Γ2E + |U |2P (E + P)ΓU
(E + P)ΓU P(I + UU)

]
;


