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I have computationally verified the solutions in part B
of this document with a third-order Runge-Kutta ODE
solver.

Part A: modeling

1 Basic Equations

Neglecting spatial derivatives, the two-fluid equations
are the source terms of Maxwell’s equations coupled to
the source terms of the gas-dynamics equations for each
species.

Maxwell’s source term equations assert that the magnetic
field is constant, the displacement current balances the
net electrical current, and the electric correction potential
ramps linearly in response to net charge (at an extremely
stiff rate):

∂tB = 0,

∂tE =−J/ε0,

∂tφ = σ(χc)2/ε0− ε2φ,

where B is magnetic field, E is electric field, J = Ji +Je
is net current, σ = σi +σe is net charge, σi = eni is ion
charge, σe = −ene is electron charge, e is the charge on
a proton, ni is ion particle density, ne is electron particle
density, Ji = σiui is ion current, Je = σeue is ion current,
ui is ion bulk velocity, ue is electron bulk velocity, φ is
electric divergence correction potential, cχ≥ c is the cor-
rection potential speed, and ε2 is the maximal decay rate
of the electric correction potential.

The source terms for density assert that the densities
(whether mass density or particle density or charge den-
sity) remain constant:

∂tρs = 0, i.e.,

∂tns = 0, i.e.,

∂tσs = 0.

The momentum equation for generic species s is

∂t(ρsus) =
qs

ms
ρs(E+us×B)+

−→
R s,

where s is the species of interest, qs
ms

denotes charge to

mass ratio, and
−→
R s denotes the drag force on species s

due to collisions with other species.

Under the approximating (or time-splitting) assumption
that the evolution of the drag coefficient does not de-
pend on the pressure evolution equations, the momentum
equations in conjunction with the electric field equation
can be solved independently.

Five-moment gas has an evolution equation for scalar
pressure,

3
2

∂t ps = Qf
s +Qt

s, i.e., ∂tTs =
2

3ns
(Qf

s +Qt
s)

where we have used that ps = nsTs and where Qf
s denotes

frictional heating due to the drag force and Qt
s denotes

heating or cooling due to thermal equilibration among
species.

Ten-moment gas dynamics instead has an evolution
equation for tensor pressure:

∂tPs = (qs/ms)2Sym(Ps×B)+Rs +Qf
s +Qt

s, i.e.,

∂tTs = (qs/ms)2Sym(Ts×B)+(Rs +Qf
s +Qt

s)/ns,

where Sym denotes symmetric part of its argument ten-
sor, Rs denotes relaxation toward isotropy due to in-
traspecies collisions, Qf

s is generalized frictional heating,
and Qt is generalized thermal equilibration.

2 Closure

Collisional closure coefficients of linear closure relations
are most naturally related to the relaxation periods they
effect. In each case the relaxation period is of the form

τ = τ̃0
(mass)2

n
(vel)3,

where (mass) is an appropriate mass (or average of
masses on a geometric scale), (vel) is an appropriate av-
erage velocity, and τ̃0 is a proportionality constant on the
order of

τ0 := 3(2π)3/2 ε2
0

e4
1

lnΛ
;

that is, τ̃0 =α0τ0, with α0 a different number on the order
of order 1 for each relaxation period formula.
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2.1 Resistivity

Resistive drag effects equilibration of velocities and ef-
fects resistivity.

Assume that the resistive drag force is proportional to
the density of particles and the interspecies drift veloc-
ity:

−→
R ie = ηe2nine(ue−ui). The coefficient η is called

the resistivity. To see that it is the resistivity, look at
Ohm’s law (equivalently current balance) when resistive
drag balances electric field:

0 = eniE+
−→
R ie,

0 =−eneE−−→R ie.

So charge neutrality ni = ne =: n holds and

E =−
−→
R ie

en
= ηen(ui−ue) = ηJ,

where J is net current.

To see how the resistivity is related to the velocity equili-
bration time, consider momentum balance when the drag
force alone is present:

mene∂tue = ηe2nine(ui−ue) and

mini∂tui = ηe2nine(ue−ui).

That is,

∂tue = ηe2ni(ui−ue)/me and

∂tui = ηe2ne(ue−ui)/mi

Again assuming charge neutrality, taking the difference
yields

∂t(ui−ue) =−ηe2n(ui−ue)/µ, i.e.,

∂t(ui−ue) =−(ui−ue)/τslow

where µ := (m−1
i +m−1

e )−1 is reduced mass and where
the resistivity evidently is related to the slowing down
time by

η =
µ

e2nτslow
.

Braginskii gives

τslow = τ̃0

√
me

n
T 3/2

e ,

assuming me�mi. A generalization to include pair plas-
mas (consistent with the expression below for tempera-
ture equilibration period below) is

τslow = τ̃0
µ2

n

(
Ti

mi
+

Te

me

)3/2

(note that
√

Ti
mi
+ Te

me
computes an overall root-mean-

square velocity), which simplifies to

τslow = τ̃0

√
µ

n
T 3/2

if Ti = Te =: T .

2.2 Energy equilibration

2.2.1 Frictional heating

A closure for the distribution of frictional heating is dis-
tribution in inverse proportion to mass:

Qf
total := Qf

i +Qf
e =
−→
R i · (ue−ui),

Qf
i = Qf

total
me

me +mi
,

Qf
e = Qf

total
mi

me +mi
.

2.2.2 Temperature equilibration

Braginskii says that the thermal equilibration period is

τtemp = τ̃0
mime

2n

(
Ti

mi
+

Te

me

)3/2

= τslow
m
2µ

,

where m := mi +me is total particle mass.

A natural linear closure for heating due to thermal equi-
libration is

Qt
i = (3/2)Knine(Te−Ti),

where K is a thermal equilibration coefficient. To relate
K to τtemp consider temperature evolution when temper-
ature equilibration alone is present:

∂tTi =
2

3ni
Qt

s, i.e.,

∂tTi = Kne(Te−Ti), and

∂tTe = Kni(Te−Ti).
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Assuming neutrality (ni = ne = n),

∂t(Ti−Te) =−nK(Ti−Te) i.e.,

∂t(Ti−Te) =−(Ti−Te)/τtemp

where evidently

K =
1

nτtemp
.

2.3 Energy tensor equilibration

2.3.1 Isotropization

Recall temperature tensor evolution:

∂tTs = (qs/ms)2Sym(Ts×B)+(Rs +Qf
s +Qt

s)/ns.

A linear closure for Rs is relaxation toward isotropy,

Rs = (psI−Ps)/τ
c
s , i.e., Rs/ns = (TsI−Ts)/τ

c
s ,

where τc
s is the self-collision time of species s, p := trP/3

is scalar pressure, T := trT/3 is scalar temperature, and
I is the identity tensor. Braginskii says that

τ
c
s = τ̃0

√
ms

ns
T 3/2

s .

2.3.2 Thermal equilibration

For tensor thermal equilibration we can straightfowardly
generalize scalar thermal equilibration:

Qt
i = Knine(Te−Ti).

Then e.g. ∂tTi =
1
ni

Qt
s says ∂tTi = Kne(Te−Ti), so as

before K = (nτtemp)
−1.

2.3.3 Frictional heating

To generalize the scalar closure for frictional heating it
is necessary to specify how to allocate resistive heating
among directions parallel and perpendicular to the direc-
tion of relative motion of the two fluids.

Part B: solving

3 The electro-momentum system

The momentum equations in conjunction with the elec-
tric field equation constitute a linear system of equations
with constant coefficients. We can divide out by den-
sity (since it is constant) and thus replace momentum
evolution with velocity evolution. Neglecting the drag
force (which would exponentially damp current) we get
an ODE with constant coefficients:

∂t

E
ui
ue

=

 0 − eni
ε0

ene
ε0

e
mi

− eB
mi
× I 0

− e
me

0 eB
me
× I


E

ui
ue

 .
We can make this ODE antisymmetric by rescaling. For
a generic rescaling, suppose

E = ẼE0,

ui = ũiui0,

ue = ũeue0.

Making this substitution gives the system

∂t

 Ẽ
ũi
ũe

=

 0 − eni
ε0

ui0
E0

ene
ε0

ue0
E0

e
mi

E0
ui0

− eB
mi
× I 0

− e
me

E0
ue0

0 eB
me
× I


 Ẽ

ũi
ũe

 .
If we require this system to be antisymmetric then

E0

ui0
=

√
ρi

ε0
,

E0

ue0
=

√
ρe

ε0
,

(where recall that ρi = mini and ρe = mene) and the sys-
tem becomes

∂t

 Ẽ
ũi
ũe

=

 0 −ΩiI ΩeI
ΩiI −Bi× I 0
−ΩeI 0 −Be× I

 Ẽ
ũi
ũe

 ,
where each entry in the block matrix represents a 3×3
matrix and where

Ωi = e
√

ni

ε0mi
and Ωe = e

√
ne

ε0me

denote the ion and electron plasma frequencies and

Bi =
eB
mi

and Be =
−eB
me

are the magnetic field rescaled for ions and electrons.
Their magnitudes are the ion gyrofrequency ωi := |Bi|
and the electron gyrofrequency ωe := |Be|.
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3.1 Solution of perpendicular system

To solve the system we decompose into parallel and per-
pendicular components. Without loss of generality as-
sume that B is in the direction of the third axis. Then our
system decouples into a parallel system

∂t

 Ẽ3
ũi3
ũe3

=

 0 −Ωi Ωe
Ωi 0 0
−Ωe 0 0

 Ẽ3
ũi3
ũe3

 ,
and a perpendicular system



Ẽ1
Ẽ2
ũi1
ũi2
ũe1
ũe2



′

=



0 0 −Ωi 0 Ωe 0
0 0 0 −Ωi 0 Ωe

Ωi 0 0 ωi 0 0
0 Ωi −ωi 0 0 0
−Ωe 0 0 0 0 −ωe

0 −Ωe 0 0 ωe 0





Ẽ1
Ẽ2
ũi1
ũi2
ũe1
ũe2

 .

This is an antisymmetric matrix and therefore has imagi-
nary eigenvalues and orthogonal eigenvectors. If we view
the first and second components of each vector as real
and imaginary parts, then this becomes a 3×3 complex
linear differential equation with a skew hermitian coeffi-
cient matrix:

∂t

 Ẽ⊥
ũi⊥
ũe⊥

=

 0 −Ωi Ωe
Ωi −iωi 0
−Ωe 0 iωe

 Ẽ⊥
ũi⊥
ũe⊥

 , (1)

where we have used the natural isomorphism between
SO(2,R) and complex numbers

a+ ib←→
[

a −b
b a

]
.

Observe that the parallel system is the special case of this
system when the magnetic field is zero.

To generalize, suppose we want to solve the constant-
coefficient linear ODE

x′ = A · x.

Seeking a solution x(t) = vexp(λt) (where v 6= 0) leads
to the eigenvector problem

vλ = A · v, i.e., (A− Iλ) · v = 0.

We recall the theory of skew-Hermitian and Hermitian
matrices. Since A is skew-Hermitian (i.e. A∗ = −A,
where ∗ denotes the conjugate of the transpose), B := iA
is Hermitian (i.e. B∗ = B).

The eigenvalues of a Hermitian matrix are real. Indeed,
assuming without loss of generality that v∗v = 1,

λ = v∗vλ = v∗Bv = v∗B∗v = (v∗Bv)∗ = (v∗vλ)∗

= v∗vλ
∗ = λ

∗,

and eigenvectors for different eigenvalues are orthogo-
nal:

v∗2v1λ1 = v∗2Bv1 = v∗2B∗v1 = (v∗1Bv2)
∗ = (v∗1v2λ2)

∗

= v∗2v1λ2,

which says that either v∗2v1 = 0 or λ1 = λ2.

Note that if (v,ω) is an eigenvector-eigenvalue pair for B
then (v, iω) is an eigenvector-eigenvalue pair for A.

To find the eigenstructure we solve

0 = (A− iω) · v =

−iω −Ωi Ωe
Ωi −i(ωi +ω) 0
−Ωe 0 i(ωe−ω)

 · v.
(2)

If this has a nontrivial solution then the first row is a lin-
ear combination of the second two and we can ignore it.
The second two equations then show that an eigenvector
must be a multiple of the form

v =

iβeβi
Ωiβe
Ωeβi

 , where βi = ωi +ω and βe = ωe−ω,

as is confirmed (for the last two rows) by computing
(A− iω) · v; the relation implied by the first row reveals
the characteristic equation. Alternatively, the calculation

A · v =

 0 −Ωi Ωe
Ωi −iωi 0
−Ωe 0 iωe

 ·
iβeβi

Ωiβe
Ωeβi


=

 −Ω2
i βe +Ω2

eβi
iβi(Ωiβe)− iωi(Ωiβe)
−i(Ωeβi)βe + iωe(Ωeβi)

= viω =

iβeβi
Ωiβe
Ωeβi

 iω

shows that ω must satisfy

βeβiω = Ω
2
i βe−Ω

2
eβi,

ω = βi−ωi,

ω =−βe +ωe.
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The last two equations confirm that

βi = ωi +ω,

βe = ωe−ω,

and substituting these two relationships into the first
equation gives the characteristic equation that an eigen-
value must satisfy:

(ωe−ω)(ωi +ω)ω = Ω
2
i (ωe−ω)−Ω

2
e(ωi +ω).

Expanding in ω and collecting like terms gives

0 =ω
3 +(ωi−ωe)ω

2− (ωiωe +Ω
2
i +Ω

2
e)ω (3)

+
���

���
��:0

(Ω2
i ωe−Ω

2
eωi), (4)

which is ω times a quadratic.

Note that the eigenvector v =

iβeβi
Ωiβe
Ωeβi

 is never zero; in-

deed, Ωi and Ωe are strictly positive, and βi = ωi+ω and
βe =ωe−ω cannot both be zero since otherwise ωi =−ω

and ωe = ω, contradicting that ωi and ωe are both strictly
positive.

By the theory of Hermitian matrices a full set of orthogo-
nal eigenvectors must exist. Since each eigenvector has a
one-dimensional eigenspace, there must be three distinct
eigenvalues ω.

Decompose v into real and imaginary parts:

v = a+ ib =

 0
Ωiβe
Ωeβi

+ i

βeβi
0
0

 .
Observe that the real and imaginary parts are orthogonal.
Note that

−iv = b− ia =

βeβi
0
0

− i

 0
Ωiβe
Ωeβi


is also an eigenvector with eigenvalue iω and that these
two eigenvectors are orthogonal: v∗(−iv) = 2a · b = 0.
The eigenvector-eigenvalue pair (v, iω) corresponds to
the solution

vexp(iωt) = (a+ ib)(cosωt + isinωt)

= (acosωt−bsinωt)+ i(bcosωt +asinωt)

=

−βeβi sinωt
Ωiβe cosωt
Ωeβi cosωt

+ i

βeβi cosωt
Ωiβe sinωt
Ωeβi sinωt

 ,

and the eigenvector-eigenvalue pair (−iv, iω) corre-
sponds to the solution

−ivexp(iωt) = (b− ia)(cosωt + isinωt)

= (bcosωt +asinωt)+ i(bcosωt−asinωt)

=

βeβi cosωt
Ωiβe sinωt
Ωeβi sinωt

+ i

 βeβi sinωt
−Ωiβe cosωt
−Ωeβi cosωt

 .
Observe that in each of these solutions the ion and elec-
tron currents are in phase and the electric field is 90 de-
grees out of phase relative to them.

These two solutions are independent when interpreted (in
SO(2,R)) as real solutions:

Ẽ1
Ẽ2
ũi1
ũi2
ũe1
ũe2

=



−βeβi sinωt
βeβi cosωt
Ωiβe cosωt
Ωiβe sinωt
Ωeβi cosωt
Ωeβi sinωt

 and



Ẽ1
Ẽ2
ũi1
ũi2
ũe1
ũe2

=



βeβi cosωt
βeβi sinωt
Ωiβe sinωt
−Ωiβe cosωt
Ωeβi sinωt
−Ωeβi cosωt

 .

Evaluated at time 0 these solutions are

Ẽ1
Ẽ2
ũi1
ũi2
ũe1
ũe2

=



0
βeβi
Ωiβe

0
Ωeβi

0

 and



Ẽ1
Ẽ2
ũi1
ũi2
ũe1
ũe2

=



βeβi
0
0

−Ωiβe
0

−Ωeβi

 .

Note that orthogonality of complex solutions is equiva-
lent to orthogonality of real solutions. So we have found
three distinct imaginary eigenvalues and 6 orthogonal
eigenvectors for the original 6×6 antisymmetric matrix.

3.2 Parallel system

The parallel system

∂t

 Ẽ3
ũi3
ũe3

=

 0 −Ωi Ωe
Ωi 0 0
−Ωe 0 0

 Ẽ3
ũi3
ũe3

 ,
is the special, singular case of the perpendicular system
(1) when the magnetic field is zero.

In this case the system (2) becomes

0 = (A− iω) · v =

−iω −Ωi Ωe
Ωi −iω 0
−Ωe 0 −iω

 · v.
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So eigenvalue/eigenvector pairs are

ω = 0, v =

 0
Ωe
Ωi

 and ω =±Ωp, v =

 iω
Ωi
−Ωe

 ,
where Ωp :=

√
Ω2

i +Ω2
e is the plasma frequency.

To get real solutions we look at the real and imaginary
parts of one of the complex-conjugate pair of solutions.
Choose ω = Ωp. Write

a+ ib =

 0
Ωi
−Ωe

+ i

Ωp

0
0

 .
Analogous to (3.1), the real and imaginary parts are real
solutions:

vexp(iΩpt) = (a+ ib)(cosΩpt + isinΩpt)

= (acosΩpt−bsinΩpt)+ i(bcosΩpt +asinΩpt)

=

−Ωp sinΩpt
Ωi cosΩpt
−Ωe cosΩpt

+ i

 Ωp cosΩpt
Ωi sinΩpt
−Ωe sinΩpt

 .
So three orthogonal eigensolutions are 0

Ωe
Ωi

 ,
−Ωp sinΩpt

Ωi cosΩpt
−Ωe cosΩpt

 ,
 Ωp cosΩpt

Ωi sinΩpt
−Ωe sinΩpt

 .
Evaluated at time 0 these solutions are 0

Ωe
Ωi

 ,
 0

Ωi
−Ωe

 ,
Ωp

0
0

 .
Agreement with perpendicular system. If we take
the limit as |B| → 0 in the perpendicular system we
expect the solutions to decouple into solutions for(
Ẽ1, ũi1, ũe1

)T and
(
Ẽ2, ũi2, ũe2

)T that agree with the so-
lutions for the parallel system. As |B| → 0, ωi→ 0 and
ωe → 0 and so βi → ω and βe →−ω. For the limiting
eigenfrequency ω = Ωp the parallel solutions

Ẽ1
Ẽ2
ũi1
ũi2
ũe1
ũe2

=



−βeβi sinωt
βeβi cosωt
Ωiβe cosωt
Ωiβe sinωt
Ωeβi cosωt
Ωeβi sinωt

 and



Ẽ1
Ẽ2
ũi1
ũi2
ũe1
ũe2

=



βeβi cosωt
βeβi sinωt
Ωiβe sinωt
−Ωiβe cosωt
Ωeβi sinωt
−Ωeβi cosωt



when divided by βe =−Ωp become



Ẽ1
Ẽ2
ũi1
ũi2
ũe1
ũe2

=



−Ωp sinΩpt
Ωp cosΩpt
Ωi cosΩpt
Ωi sinΩpt
−Ωe cosΩpt
−Ωe sinΩpt

 and



Ẽ1
Ẽ2
ũi1
ũi2
ũe1
ũe2

=



Ωp cosΩpt
Ωp sinΩpt
Ωi sinΩpt
−Ωi cosΩpt
−Ωe sinΩpt
Ωe cosΩpt

 ,

and for the limiting eigenfrequency ω=−Ωp the parallel
solutions when divided by βe = Ωp become



Ẽ1
Ẽ2
ũi1
ũi2
ũe1
ũe2

=



−Ωp sinΩpt
−Ωp cosΩpt
Ωi cosΩpt
−Ωi sinΩpt
−Ωe cosΩpt
Ωe sinΩpt

 and



Ẽ1
Ẽ2
ũi1
ũi2
ũe1
ũe2

=



−Ωp cosΩpt
Ωp sinΩpt
−Ωi sinΩpt
−Ωi cosΩpt
Ωe sinΩpt
Ωe cosΩpt

 .

When projected onto axis 1 these solutions all agree with
the second and third eigensolutions for the parallel com-
ponent, and likewise for axis 2.

For the limiting eigenfrequency ω = 0, βe := ωe +ω and
βi :=ωi−ω both go to zero (since ωe and ωi go to zero as
B goes to zero). We may infer that βeβi goes very quickly
to zero. When ω is small cosωt ≈ 1 and sinωt ≈ 0. So
for small magnetic field we expect



Ẽ1
Ẽ2
ũi1
ũi2
ũe1
ũe2

=



−βeβi sinωt
βeβi cosωt
Ωiβe cosωt
Ωiβe sinωt
Ωeβi cosωt
Ωeβi sinωt

≈


0
0

Ωiβe
0

Ωeβi
0

 ,

which agrees with the direction of the expected limiting
eigensolution Ẽ1

ũi1
ũe1

≈
 0

Ωe
Ωi



if βe
βi
→
(

Ωe
Ωi

)2
as B → 0. I do not see how to show

this in general, but in the neutral case where ni = ne,
Ω2

i ωe = Ω2
eωi, so the constant term vanishes in the char-

acteristic polynomial equation (3), ω = 0 is always an

eigenvalue, and βi = ωi and βe = ωe, so βe
βi

=
(

Ωe
Ωi

)2
as

needed.
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4 The pressure tensor system

Ignoring interspecies collisions, the pressure tensor evo-
lution equation with linear closure is

∂tPs = (qs/ms)2Sym(Ps×B)+Rs,

where

Rs = (tr(Ps)I−Ps)/τ
c
s

and

τ
c
s = τ̃0

√
ms

ns
T 3/2

s .

Observe that temperature isotropization leaves temper-
ature invariant. So this is a linear ODE with constant
coefficients. The P×B term rotates the pressure tensor
around the magnetic field. The relaxation term relaxes
the pressure toward isotropy. These two operations com-
mute. So we can trivially solve this ODE exactly.

4.1 Rotation of the pressure tensor

The P×B term rotates the pressure tensor around the
magnetic field vector. The rate of rotation is the species
gyrofrequency, so the angle of rotation of the ion pressure
tensor in time interval dt is ωidt.

Let ei denote the ith standard basis vector. Let e′i(t) de-
note the rotated version of ei. Let P(t) denote the ro-
tated pressure tensor. The pressure tensor components
are Pmn(t) = em ·P · en. The pressure tensor components
are invariant in a rotating (primed) coordinate frame:

P(t) = Pi j(0)e′ie
′
j.

Therefore, the components in the standard basis are:

Pmn(t) = Pi j(0)(e′i · em)(e′j · en).

Thus, to evolve the pressure tensor Ps for species s over
a time interval dt , we need to apply to the standard basis
vectors a rotation with rotation vector R := qs

ms
Bdt , i.e.

with direction b̂ := B/|B| and angle θ := ωs dt , where
ωs := |B| qs

ms
is the gyrofrequency of species s.

To rotate a vector u by the vector R = θb̂, where θ = |R|,
decompose it into parallel and perpendicular components

and rotate the perpendicular component:

u‖ = u · b̂b̂
u⊥ = u−u‖
u = u‖+u⊥

The rotated vector is

u′ = u‖+(cosθ)u⊥+(sinθ)u× b̂.

= u(cosθ)+(1− cosθ)u‖+(sinθ)u× b̂

We can avoid renormalizing the rotation vector if we use
the sine cardinal function.

u′ = u(cosθ)+2
(

sin
θ

2

)2

u · b̂b̂

+2
(

cos
θ

2

)(
sin

θ

2

)
u× b̂

= u(cosθ)+
1
2

(
sinc

θ

2

)2

u ·RR

+

(
cos

θ

2

)(
sinc

θ

2

)
u×R

Recall that e′i is the rotated version of the elementary ba-
sis vector ei. To express the components of the rotation
matrix Ri j := ei · e′j, adopt the abbreviations c := cosθ

and s := sinθ. The rotated vector is

e′j = ce j +(1− c)e j · b̂b̂+ se j× b̂

= e j ·
(
cI+(1− c)b̂b̂+ sI× b̂

)︸ ︷︷ ︸
RT

To determine the components of I× b̂, match up the iden-
tity

u× b̂ = u · I× b̂ = (I× b̂)T ·u

with the coordinate expansion

u× b̂ =

u2b3−u3b2
u3b1−u1b3
u1b2−u2b1


=

 0 b3 −b2
−b3 0 b1
b2 −b1 0


︸ ︷︷ ︸

(I×b̂)T

u1
u2
u3



So the rotation matrix R is:b1b1(1− c)+ c b1b2(1− c)+ sb3 b1b3(1− c)− sb2
b2b1(1− c)− sb3 b2b2(1− c)+ c b2b3(1− c)+ sb1
b3b1(1− c)+ sb2 b3b2(1− c)− sb1 b3b3(1− c)+ c

 ,
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where we are free to make the replacements

(1− c)bib j = (1/2)sinc2(θ/2)RiR j,

sbi =sinc(θ/2)cos(θ/2)Ri.

5 Positivity

An exact solver for the source term can be used as a com-
ponent of a positivity-preserving discontinuous Galerkin
solver for the two-fluid equations. This requires use of
time-splitting to handle the source term and the flux sep-
arately.

Positivity-preserving methods work by maintaining two
conditions: (1) the average state in each mesh cell sat-
isfies positivity, and (2) the state at a set of positivity
points satisfies positivity. At the beginning of a time step
positivity of each cell average is assumed and positivity
is enforced at the cell’s positivity points by if necessary
rescaling the perturbation by a damping factor just suffi-
ciently smaller than 1.

For a source-term time step, the positivity points are

simply the Gaussian quadrature points used to integrate
over the cell volume. The exact source term solver sam-
ples the state at each Gaussian quadrature point, solves
the source term exactly there, and then uses Gaussian
quadrature to project onto the modal representation of the
cell averages (sampling and projection are no-op’s in the
case of nodal DG). The cell average is a convex combi-
nation of the state at the quadrature points, so positivity
of the cell average is maintained because density and the
minimal eigenpressure are (not necessarily strictly) con-
cave functions of the state variables.

I remark that use of an exact solver for the source term
also allows a ten-moment solver to conserve energy ex-
actly.
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