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Theorem 1 (Taylor, with integral remainder). Let f : R 7→
R have n + 1 continuous derivatives on the interval [a, x].
Then

f(x) =
n∑

k=0

(x− a)k

k!
f (k)(a) + Rn

=f(a) + (x− a)f ′(a) +
(x− a)2

2
f ′′(a)

+ · · ·+ (x− a)k

k!
f (k)(a)

+ · · ·+ (x− a)n

n!
fn(a) + Rn,

where

Rn =
∫ x

a

(x− s)n

n!
f (n+1)(s) ds.

Corollary 2 (Lagrange remainder).

∃c ∈ [a, x] such that Rn =
(x− a)n+1

(n + 1)!
f (n+1)(c).

Proof of Theorem 1. To prove Taylor’s theorem, we begin
with the fundamental theorem of Calculus in the form

f(x) = f(a) +
∫ x

a

f ′(s)ds︸ ︷︷ ︸
R0

,

which is just Taylor’s theorem with integral remainder for
n = 0.

To derive Taylor’s theorm, we will make use of integration
by parts, which says that for any functions g, h differentiable
on [a, x],∫ x

a

h′g = [hg]xa −
∫ x

a

hg′.

In deriving Taylor’s theorem, it is convenient to replace h
with −h and rewrite this as∫ x

a

(−h)′g = [hg]ax +
∫ x

a

hg′.

We wish to express f(x) in terms of the value of its deriva-
tives at the a boundary of the interval [a, x]. So we view the
integrand as 1 · f ′ and use integration by parts to transfer

the derivative from 1 to f ′.
∫

1ds = s − C; we will choose
C to eliminate the term from the x boundary of [a, x]:

R0 =
∫ x

a

f ′(s)ds

= [(s− C)f ′(s)]xs=a −
∫ x

a

(s− C)f ′′(s)ds

= [(C − s)f ′(s)]as=x +
∫ x

a

(C − s)f ′′(s)ds

To eliminate the f ′(x) term, we choose C = x. Then

R0 = (x− a)f ′(a) +
∫ x

a

(x− s)f ′′(s)ds︸ ︷︷ ︸
R1

,

which shows Taylor’s theorem for n = 1.

To prove Taylor’s theorem with integral remainder in gen-
eral, it is enough to show that

Rn−1 =
(x− a)n

n!
f (n)(a) + Rn. (1)

(This is a disguised proof by induction.) Indeed,

Rn−1 =
∫ x

a

(x− s)n−1

(n− 1)!
f (n)(s) ds

=
[ (x− s)n

n!
f (n)(s)

]a

s=x
+

∫ x

a

(x− s)n

n!
f (n+1)(s) ds

=
(x− a)n

n!
f (n)(a) + Rn,

as needed.

Proof of Corollary 2. Let m = mins∈[a,x] f
(n+1)(s) and

let M = maxs∈[a,x] f
(n+1)(s). Then the image of the

interval [a, x] under the continuous function f (n+1) is
f (n+1)([a, x]) = [m, M ], so

Rn ∈
∫ x

a

(x− s)n+1

n!
[m, M ]ds

=
(x− a)n+1

(n + 1)!
[m, M ]

=
(x− a)n+1

(n + 1)!
f (n+1)([a, x]),

i.e. ∃c ∈ [a, x] such that Rn = (x−a)n+1

(n+1)! f (n+1)(c), as
needed.
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1 Multiple variables.

Corollary 3 (Taylor for multiple variables). Let f : Rm 7→
R have n + 1 continuous partial derivatives on an open re-
gion containing the interval [r0, r1]. Then

f(r1) =

nX
k=0

((r1 − r0) · ∇)kf(r0)

k!
+

((r1 − r0) · ∇)n+1f(rc)

(n + 1)!
,

for some rc on the line segment between r0 and r1.

Proof of Corollary 3. Let h(t) = f(r0 + t(r1 − r0)). Then
for some c ∈ [0, 1]

f(r1) =h(1) =

nX
k=0

h(k)(0)

k!
+

h(n+1)(c)

(n + 1)!

=

nX
k=0

((r1 − r0) · ∇)kf(r0)

k!
+

((r1 − r0) · ∇)n+1f(rc)

(n + 1)!
,

where rc := r0 +c(r1−r0) lies on the line segment between
r0 and r1.
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