Taylor Series

by Alec Johnson

October 20, 2008

Theorem 1 (Taylor, with integral remainder). Let $f: \mathbb{R} \mapsto$ \mathbb{R} have $n+1$ continuous derivatives on the interval $[a, x]$. Then

$$
\begin{aligned}
f(x)= & \sum_{k=0}^{n} \frac{(x-a)^{k}}{k!} f^{(k)}(a)+R_{n} \\
= & f(a)+(x-a) f^{\prime}(a)+\frac{(x-a)^{2}}{2} f^{\prime \prime}(a) \\
& \left.+\cdots+\frac{(x-a)^{k}}{k!} f^{(} k\right)(a) \\
& +\cdots+\frac{(x-a)^{n}}{n!} f^{n}(a)+R_{n}
\end{aligned}
$$

where

$$
R_{n}=\int_{a}^{x} \frac{(x-s)^{n}}{n!} f^{(n+1)}(s) d s
$$

Corollary 2 (Lagrange remainder).

$$
\exists c \in[a, x] \text { such that } R_{n}=\frac{(x-a)^{n+1}}{(n+1)!} f^{(n+1)}(c)
$$

Proof of Theorem 1. To prove Taylor's theorem, we begin with the fundamental theorem of Calculus in the form

$$
f(x)=f(a)+\underbrace{\int_{a}^{x} f^{\prime}(s) d s}_{R_{0}}
$$

which is just Taylor's theorem with integral remainder for $n=0$.

To derive Taylor's theorm, we will make use of integration by parts, which says that for any functions g, h differentiable on $[a, x]$,

$$
\int_{a}^{x} h^{\prime} g=[h g]_{a}^{x}-\int_{a}^{x} h g^{\prime}
$$

In deriving Taylor's theorem, it is convenient to replace h with $-h$ and rewrite this as

$$
\int_{a}^{x}(-h)^{\prime} g=[h g]_{x}^{a}+\int_{a}^{x} h g^{\prime}
$$

We wish to express $f(x)$ in terms of the value of its derivatives at the a boundary of the interval $[a, x]$. So we view the integrand as $1 \cdot f^{\prime}$ and use integration by parts to transfer
the derivative from 1 to f^{\prime}. $\int 1 d s=s-C$; we will choose C to eliminate the term from the x boundary of $[a, x]$:

$$
\begin{aligned}
& R_{0}=\int_{a}^{x} f^{\prime}(s) d s \\
& =\left[(s-C) f^{\prime}(s)\right]_{s=a}^{x}-\int_{a}^{x}(s-C) f^{\prime \prime}(s) d s \\
& =\left[(C-s) f^{\prime}(s)\right]_{s=x}^{a}+\int_{a}^{x}(C-s) f^{\prime \prime}(s) d s
\end{aligned}
$$

To eliminate the $f^{\prime}(x)$ term, we choose $C=x$. Then

$$
R_{0}=(x-a) f^{\prime}(a)+\underbrace{\int_{a}^{x}(x-s) f^{\prime \prime}(s) d s}_{R_{1}}
$$

which shows Taylor's theorem for $n=1$.
To prove Taylor's theorem with integral remainder in general, it is enough to show that

$$
\begin{equation*}
R_{n-1}=\frac{(x-a)^{n}}{n!} f^{(n)}(a)+R_{n} \tag{1}
\end{equation*}
$$

(This is a disguised proof by induction.) Indeed,

$$
\begin{aligned}
R_{n-1} & =\int_{a}^{x} \frac{(x-s)^{n-1}}{(n-1)!} f^{(n)}(s) d s \\
& =\left[\frac{(x-s)^{n}}{n!} f^{(n)}(s)\right]_{s=x}^{a}+\int_{a}^{x} \frac{(x-s)^{n}}{n!} f^{(n+1)}(s) d s \\
& =\frac{(x-a)^{n}}{n!} f^{(n)}(a)+R_{n}
\end{aligned}
$$

as needed.

Proof of Corollary 2. Let $m=\min _{s \in[a, x]} f^{(n+1)}(s)$ and let $M=\max _{s \in[a, x]} f^{(n+1)}(s)$. Then the image of the interval $[a, x]$ under the continuous function $f^{(n+1)}$ is $f^{(n+1)}([a, x])=[m, M]$, so

$$
\begin{aligned}
R_{n} \in & \int_{a}^{x} \frac{(x-s)^{n+1}}{n!}[m, M] d s \\
& =\frac{(x-a)^{n+1}}{(n+1)!}[m, M] \\
& =\frac{(x-a)^{n+1}}{(n+1)!} f^{(n+1)}([a, x])
\end{aligned}
$$

i.e. $\exists c \in[a, x]$ such that $R_{n}=\frac{(x-a)^{n+1}}{(n+1)!} f^{(n+1)}(c)$, as needed.

1 Multiple variables.

Corollary 3 (Taylor for multiple variables). Let $f: \mathbb{R}^{m} \mapsto$ \mathbb{R} have $n+1$ continuous partial derivatives on an open region containing the interval $\left[\mathbf{r}_{0}, \mathbf{r}_{1}\right]$. Then

$$
f\left(\mathbf{r}_{1}\right)=\sum_{k=0}^{n} \frac{\left(\left(\mathbf{r}_{1}-\mathbf{r}_{0}\right) \cdot \nabla\right)^{k} f\left(\mathbf{r}_{0}\right)}{k!}+\frac{\left(\left(\mathbf{r}_{1}-\mathbf{r}_{0}\right) \cdot \nabla\right)^{n+1} f\left(\mathbf{r}_{c}\right)}{(n+1)!}
$$

for some \mathbf{r}_{c} on the line segment between \mathbf{r}_{0} and \mathbf{r}_{1}.

Proof of Corollary 3. Let $h(t)=f\left(\mathbf{r}_{0}+t\left(\mathbf{r}_{1}-\mathbf{r}_{0}\right)\right)$. Then for some $c \in[0,1]$

$$
\begin{aligned}
f\left(\mathbf{r}_{1}\right) & =h(1)=\sum_{k=0}^{n} \frac{h^{(k)}(0)}{k!}+\frac{h^{(n+1)}(c)}{(n+1)!} \\
& =\sum_{k=0}^{n} \frac{\left(\left(\mathbf{r}_{1}-\mathbf{r}_{0}\right) \cdot \nabla\right)^{k} f\left(\mathbf{r}_{0}\right)}{k!}+\frac{\left(\left(\mathbf{r}_{1}-\mathbf{r}_{0}\right) \cdot \nabla\right)^{n+1} f\left(\mathbf{r}_{c}\right)}{(n+1)!}
\end{aligned}
$$

where $\mathbf{r}_{c}:=\mathbf{r}_{0}+c\left(\mathbf{r}_{1}-\mathbf{r}_{0}\right)$ lies on the line segment between \mathbf{r}_{0} and \mathbf{r}_{1}.

References

[1] http://en.wikipedia.org/wiki/Taylor_series
[Rudin53] Walter Rudin, Principles of Mathematical Analysis, McGraw-Hill, ©1953.

