Taylor Series by Alec Johnson October 20, 2008

 \mathbb{R} have n+1 continuous derivatives on the interval [a, x]. C to eliminate the term from the x boundary of [a, x]: Then

$$f(x) = \sum_{k=0}^{n} \frac{(x-a)^{k}}{k!} f^{(k)}(a) + R_{n}$$

= $f(a) + (x-a)f'(a) + \frac{(x-a)^{2}}{2}f''(a)$
+ $\cdots + \frac{(x-a)^{k}}{k!}f^{(k)}(a)$
+ $\cdots + \frac{(x-a)^{n}}{n!}f^{n}(a) + R_{n},$

where

$$R_n = \int_a^x \frac{(x-s)^n}{n!} f^{(n+1)}(s) \, ds.$$

Corollary 2 (Lagrange remainder).

$$\exists c \in [a, x]$$
 such that $R_n = \frac{(x-a)^{n+1}}{(n+1)!} f^{(n+1)}(c).$

Proof of Theorem 1. To prove Taylor's theorem, we begin with the fundamental theorem of Calculus in the form

$$f(x) = f(a) + \underbrace{\int_{a}^{x} f'(s)ds}_{R_0},$$

which is just Taylor's theorem with integral remainder for n = 0.

To derive Taylor's theorm, we will make use of integration by parts, which says that for any functions q, h differentiable on [a, x],

$$\int_a^x h'g = [hg]_a^x - \int_a^x hg'.$$

In deriving Taylor's theorem, it is convenient to replace hwith -h and rewrite this as

$$\int_{a}^{x} (-h)'g = [hg]_{x}^{a} + \int_{a}^{x} hg'.$$

We wish to express f(x) in terms of the value of its derivatives at the *a* boundary of the interval [a, x]. So we view the i.e. $\exists c \in [a, x]$ such that $R_n = \frac{(x-a)^{n+1}}{(n+1)!} f^{(n+1)}(c)$, as integrand as $1 \cdot f'$ and use integration by parts to transfer needed.

Theorem 1 (Taylor, with integral remainder). Let $f : \mathbb{R} \mapsto derivative from 1$ to f'. $\int 1 ds = s - C$; we will choose

$$R_{0} = \int_{a}^{x} f'(s)ds$$

= $[(s - C)f'(s)]_{s=a}^{x} - \int_{a}^{x} (s - C)f''(s)ds$
= $[(C - s)f'(s)]_{s=x}^{a} + \int_{a}^{x} (C - s)f''(s)ds$

To eliminate the f'(x) term, we choose C = x. Then

$$R_{0} = (x - a)f'(a) + \underbrace{\int_{a}^{x} (x - s)f''(s)ds}_{R_{1}}$$

which shows Taylor's theorem for n = 1.

To prove Taylor's theorem with integral remainder in general, it is enough to show that

$$R_{n-1} = \frac{(x-a)^n}{n!} f^{(n)}(a) + R_n.$$
(1)

(This is a disguised proof by induction.) Indeed,

$$R_{n-1} = \int_{a}^{x} \frac{(x-s)^{n-1}}{(n-1)!} f^{(n)}(s) \, ds$$

= $\left[\frac{(x-s)^{n}}{n!} f^{(n)}(s)\right]_{s=x}^{a} + \int_{a}^{x} \frac{(x-s)^{n}}{n!} f^{(n+1)}(s) \, ds$
= $\frac{(x-a)^{n}}{n!} f^{(n)}(a) + R_{n},$

as needed.

Proof of Corollary 2. Let $m = \min_{s \in [a,x]} f^{(n+1)}(s)$ and let $M = \max_{s \in [a,x]} f^{(n+1)}(s)$. Then the image of the interval [a, x] under the continuous function $f^{(n+1)}$ is $f^{(n+1)}([a,x]) = [m,M]$, so

$$R_n \in \int_a^x \frac{(x-s)^{n+1}}{n!} [m, M] ds$$

= $\frac{(x-a)^{n+1}}{(n+1)!} [m, M]$
= $\frac{(x-a)^{n+1}}{(n+1)!} f^{(n+1)}([a, x]),$

1 Multiple variables.

Corollary 3 (Taylor for multiple variables). Let $f : \mathbb{R}^m \mapsto \mathbb{R}$ have n + 1 continuous partial derivatives on an open region containing the interval $[\mathbf{r}_0, \mathbf{r}_1]$. Then

$$f(\mathbf{r}_1) = \sum_{k=0}^n \frac{((\mathbf{r}_1 - \mathbf{r}_0) \cdot \nabla)^k f(\mathbf{r}_0)}{k!} + \frac{((\mathbf{r}_1 - \mathbf{r}_0) \cdot \nabla)^{n+1} f(\mathbf{r}_c)}{(n+1)!}$$

for some \mathbf{r}_c on the line segment between \mathbf{r}_0 and \mathbf{r}_1 .

Proof of Corollary 3. Let $h(t) = f(\mathbf{r}_0 + t(\mathbf{r}_1 - \mathbf{r}_0))$. Then for some $c \in [0, 1]$

$$f(\mathbf{r}_{1}) = h(1) = \sum_{k=0}^{n} \frac{h^{(k)}(0)}{k!} + \frac{h^{(n+1)}(c)}{(n+1)!}$$
$$= \sum_{k=0}^{n} \frac{((\mathbf{r}_{1} - \mathbf{r}_{0}) \cdot \nabla)^{k} f(\mathbf{r}_{0})}{k!} + \frac{((\mathbf{r}_{1} - \mathbf{r}_{0}) \cdot \nabla)^{n+1} f(\mathbf{r}_{c})}{(n+1)!},$$

where $\mathbf{r}_c := \mathbf{r}_0 + c(\mathbf{r}_1 - \mathbf{r}_0)$ lies on the line segment between \mathbf{r}_0 and \mathbf{r}_1 .

References

- [1] http://en.wikipedia.org/wiki/Taylor_series
- [Rudin53] Walter Rudin, Principles of Mathematical Analysis, McGraw-Hill, ©1953.