Nondimensionalization of plasma equations

by E. Alec Johnson, February 2011

Physical constants that define an ion-electron plasma are:

- 1. *e*, the magnitude of the charge of an electron,
- 2. m_i , m_e , the ion and electron mass, and
- 3. *c*, the speed of light.

Three fundamental parameters that characterize the state of a plasma are:

- 1. n_0 , a typical particle density,
- 2. T_0 , a typical temperature (often per species), and
- 3. B_0 , a typical magnetic field strength.

In quasineutral equilibrium we can take $n_0 = n_i = n_e$ and $T_0 = T_i = T_e$. The thermal pressure is $p_0 := n_0 T_0$ and the magnetic pressure is $p_B := \frac{B_0^2}{2\mu_0}$.

Subsidiary space, time, and velocity scale parameters derived from the fundamental parameters are the gyrofrequencies $\omega_{g,s}$, the plasma frequencies $\omega_{p,s}$, the thermal velocity $v_{t,s}$, the Alfvén velocities $v_{A,s}$, the gyroradii $r_{g,s}$, the Debye length λ_D , and the inertial lengths (i.e. skin depths) δ_s :

1.
$$\omega_{g,s} = \frac{eB_0}{m_s}$$
,
2. $\omega_{p,s}^2 = \frac{n_0 e^2}{\epsilon_0 m_s}$,
3. $v_{t,s}^2 = \frac{T_s}{m_s} = \frac{p_s}{\rho_s}$, $\tilde{v}_{t,s}^2 := 2v_{t,s}^2$,
4. $v_{A,s}^2 = \frac{B_0^2}{\mu_0 m_s n_0} = \frac{2p_B}{\rho_s}$,
5. $r_{g,s} = \frac{v_{t,s}}{\omega_{g,s}} = \frac{m_s v_{t,s}}{eB_0}$, $\tilde{r}_{g,s} = \frac{\tilde{v}_{t,s}}{\omega_{g,s}}$,
6. $\lambda_D^2 = \left(\frac{v_{t,s}}{\omega_{p,s}}\right)^2 = \frac{\epsilon_0 T_0}{n_0 e^2}$,
7. $\delta_s^2 = \left(\frac{c}{\omega_{p,s}}\right)^2 = \left(\frac{v_{A,s}}{\omega_{g,s}}\right)^2 = \frac{m_s}{\mu_0 n_s e^2}$

Note that (most?) often in the literature the thermal velocity is defined as $\tilde{v}_{t,s}$ rather than $v_{t,s}$. We say that two parameters are *equivalent* if one is a constant multiple of the other. For example, the thermal velocities are equivalent to one another and to the sound speed $\sqrt{\frac{\gamma p_0}{\rho_0}}$. Important nondimensional ratios are the plasma beta $\beta := \frac{p_0}{p_B}$ and the ratio of the speed of light to the Alfvén speed. Other nondimensional ratios can be defined in terms of these ratios:

1.
$$\beta = \frac{p_0}{p_B} = \left(\frac{\tilde{v}_{t,s}}{v_{A,s}}\right)^2 = \left(\frac{\tilde{r}_{g,s}}{\delta_s}\right)^2,$$

2. $\frac{c}{v_{A,s}} = \frac{r_{g,s}}{\lambda_D} = \frac{\omega_{p,s}}{\omega_{g,s}}.$

The subsidiary parameters (except for the temperaturerelated parameters $v_{t,s}$ and λ_D) emerge from a generic nondimensionalization of the particle (or Vlasov or 2fluid) equations.

Choose values for:

t_0	(time scale)	(e.g. ion gyroperiod $1/\omega_{g,i}$),
x_0	(space scale)	(e.g. ion skin depth δ_i),
m_0	(mass scale)	(e.g. ion mass m_i),
$e = q_0$	(charge scale)	(e.g. ion charge e),
B_0	(magnetic field)	(e.g. $\omega_{g,i}m_i/e$), and
n_0	(number density)	(e.g. something $\gg 1/x_0^3$).

This implies typical values for:

$v_0 = x_0/t_0$	(velocity),
$E_0 = B_0 v_0$	(electric field),
$\sigma_0 = en_0$	(charge density),
$J_0 = en_0v_0$	(current density), and
$S_0 = n_0$	(no. particles per unit number density).

Making the substitutions

$t=\tilde{t}t_0,$	$\mathbf{E} = \mathbf{E} B_0 v_0,$
$\mathbf{x} = \widetilde{\mathbf{x}} x_0,$	$\sigma = \widetilde{\sigma} e n_0,$
$q = \widetilde{q}e,$	$\mathbf{J}=\widetilde{\mathbf{J}}en_{0}v_{0},$
$m = \widetilde{m}m_0,$	$S_p(\mathbf{x}_p) = \widetilde{S}_p(\widetilde{\mathbf{x}}_p)n_0,$
$n = \widetilde{n}n_0,$	$c = \widetilde{c}v_0,$
$\mathbf{B} = \frac{\widetilde{\mathbf{B}}B_0}{\mathbf{B}},$	$\mathbf{v} = \widetilde{\mathbf{v}} v_0$

in the fundamental equations

$$\begin{aligned} \partial_t \mathbf{B} &= -\nabla_{\mathbf{x}} \times \mathbf{E}, & \nabla_{\mathbf{x}} \cdot \mathbf{B} = 0, \\ \partial_t \mathbf{E} &= c^2 \nabla_{\mathbf{x}} \times \mathbf{B} - \mathbf{J}/\varepsilon_0, & \nabla_{\mathbf{x}} \cdot \mathbf{E} = \sigma/\varepsilon_0, \\ \mathbf{J} &= \sum_p S_p(\mathbf{x}_p) q_p v_p, & \sigma = \sum_p S_p(\mathbf{x}_p) q_p, \end{aligned}$$

where (for electrons) the base isotropization rate is

$$d_t(\mathbf{\gamma}\mathbf{v}_p) = \frac{q_p}{m_p} \Big(\mathbf{E}(\mathbf{x}_p) + \mathbf{v}_p \times \mathbf{B}(\mathbf{x}_p) \Big),$$
$$d_t \mathbf{x}_p = \mathbf{v}_p$$

gives the almost identical-appearing nondimensionalized system

$$\begin{aligned} \partial_{\tilde{t}} \widetilde{\mathbf{B}} &= -\nabla_{\widetilde{\mathbf{x}}} \times \widetilde{\mathbf{E}}, & \nabla_{\widetilde{\mathbf{x}}} \cdot \widetilde{\mathbf{B}} &= 0, \\ \partial_{\tilde{t}} \widetilde{\mathbf{E}} &= \tilde{c}^2 \nabla_{\widetilde{\mathbf{x}}} \times \widetilde{\mathbf{B}} - \widetilde{\mathbf{J}} / \boldsymbol{\epsilon}, & \nabla_{\widetilde{\mathbf{x}}} \cdot \widetilde{\mathbf{E}} &= \widetilde{\sigma} / \boldsymbol{\epsilon}, \\ \widetilde{\mathbf{J}} &= \sum_{p} \widetilde{S}_p(\widetilde{\mathbf{x}}_p) \widetilde{q}_p \widetilde{\mathbf{v}}_p, & \widetilde{\sigma} &= \sum_{p} \widetilde{S}_p(\widetilde{\mathbf{x}}_p) \widetilde{q}_p; \end{aligned}$$

and

$$d_{\tilde{t}}(\widetilde{\mathbf{v}}_{p}) = (t_{0}\boldsymbol{\omega}_{g})\frac{\widetilde{q}_{p}}{\widetilde{m}_{p}}\Big(\widetilde{\mathbf{E}}(\widetilde{\mathbf{x}}_{p}) + \widetilde{\mathbf{v}}_{p} \times \widetilde{\mathbf{B}}(\widetilde{\mathbf{x}}_{p})\Big),$$
$$d_{\tilde{t}}\widetilde{\mathbf{x}}_{p} = \widetilde{\mathbf{v}}_{p};$$

here $t_0 \omega_g = t_0 \frac{q_0 B_0}{m_0}$ is the gyrofrequency nondimensionalized by a choice of t_0 (which can be chosen to be the gyroperiod in order to set this factor to unity) and $\frac{1}{\varepsilon} = \frac{x_0 n_0 e}{v_0 B_0 \varepsilon_0} = t_0 \frac{e B_0}{m_0} \frac{\mu_0 m_0 n_0}{B_0^2} c^2 = (t_0 \omega_g) \left(\frac{c}{v_A}\right)^2$. Note that we can also write $(t_0 \omega_g) = \frac{x_0}{r_g}$.

1 Collisional nondimensional ratios

Up to this point we have neglected collisional effects. What happens if we nondimensionalize a collisional plasma model? Our starting point for collisional plasma models is the Boltzmann equation, which asserts that the density $f_s(t, \mathbf{x}, \mathbf{v})$ of particles of species s in phase space is conserved.

$$\partial_t f_{\mathrm{s}} + \mathbf{v} \cdot \nabla_{\mathbf{x}} f_{\mathrm{s}} + \mathbf{a} \cdot \nabla_{\mathbf{v}} f_{\mathrm{s}} = C_s$$

The simplest collision operator is relaxation toward a Maxwellian:

$$C_s = (f_{M,s} - f_s) / \tau_s,$$

where $f_{M,s}$ is a Maxwellian distribution (with the same number density, temperature, and velocity) and τ_s is a relaxation period (typically the isotropization period). The Braginskii formula for the relaxation period is

$$\tau_s = \tau_b \frac{\sqrt{m_s} T_s^{3/2}}{n}$$

$$\tau_b = \frac{3(2\pi)^{3/2}\varepsilon_0^2}{e^4\ln\Lambda},$$

where $\ln \Lambda$, the Coulomb logarithm, is typically between 10 and 20, and for electrons is given by the formula

$$\Lambda = 12\pi \frac{n_e}{Z} \left(\frac{\varepsilon_0 T_e}{n_e e^2}\right)^{3/2};$$

A is on the order of the number of particles in a Debye sphere.

The viscosity μ_s and heat flux K_s are related to the relaxation period (up to a fixed constant of order 1) by the relations

$$\mu_s = au_s p_s = au_b \sqrt{m_s} T_s^{5/2},$$

 $K_s = \mu_s/m_s = au_b rac{T_s^{5/2}}{\sqrt{m_s}}.$

1.1 MHD

Ideal MHD takes $c \rightarrow \infty$ and $r \rightarrow 0$ and therefore has only one free parameter (μ_0) rather than three. To nondimensionalize the MHD equations we make the substitution

$$\mathbf{B}=\sqrt{\mu_0}\hat{\mathbf{B}};$$

this eliminates μ_0 . More generically, we can nondimensionalize using a typical Alfvén speed, density, and time scale:

$$v_A = \frac{B_0}{\sqrt{\mu_0 \rho_0}}, \quad \mathbf{B} = B_0 \hat{\mathbf{B}}, \qquad \rho = \rho_0 \hat{\rho}, \qquad t = t_0 \hat{t},$$
$$\mathbf{u} = v_A \hat{\mathbf{u}}, \qquad p = \rho_0 v_A^2 \hat{p}, \quad \mathcal{E} = \rho_0 v_A^2 \hat{\mathcal{E}}, \quad x = v_A t_0 \hat{x}.$$