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1 Light waves

Recall Maxwell’s equations in a vacuum:

∂tB+ c1∇×E = 0, ∇ ·B = 0,

∂tE− c2∇×B = 0, ∇ ·E = 0.

For SI units c1 = 1 and c2 = c2; for Gaussian units, c1 = c
and c2 = c.

In one dimension this becomes two decoupled systems:

∂t

(
By
Ez

)
−∂x

(
c1Ez
c2By

)
= 0,

∂t

(
Bz
Ey

)
+∂x

(
c1Ey
c2Bz

)
= 0.

In matrix form these read:(
By
Ez

)
t
−
(

0 c1
c2 0

)
·
(

By
Ez

)
x
= 0,(

Bz
Ey

)
t
+
(

0 c1
c2 0

)
·
(

Bz
Ey

)
x
= 0,

To find the eigenstructure, we row reduce the systems(
c −c1
−c2 c

)
·
(

By
Ez

)′
= 0,(

c c1
c2 c

)
·
(

Bz
Ey

)′
= 0.

The eigenvalues are

c =±c0, where c0 :=
√

c1c2.

Left and right eigenvectors for c =±c0 are(
By
Ez

)′
right

=

(
∓1√

c2
c1

)
,

(
By
Ez

)′
left

=
1
2

(
∓1√

c1
c2

)
,

(
Bz
Ey

)′
right

=

(
±1√

c2
c1

)
,

(
Bz
Ey

)′
left

=
1
2

(
±1√

c1
c2

)
.

That is, the RΛL diagonalization is(
0 c1
c2 0

)
=

(
−1 1√

c2
c1

√
c2
c1

)(
−c0

c0

)
1
2

−1
√

c1
c2

1
√

c1
c2


and(

0 −c1
−c2 0

)
=

(
1 −1√

c2
c1

√
c2
c1

)(
−c0

c0

)
1
2

 1
√

c1
c2

−1
√

c1
c2

 .

2 Light waves with correction poten-
tials

Following [1], to attempt to enforce the divergence con-
straints we can use correction potentials.

∂t

[
B
E

]
+
[

c1∇×E+b1∇ψ

−c2∇×B+b2∇φ

]
=
[

0
−J/ε

]
,

∂t

[
ψ

φ

]
+
[

a1∇ ·B
a2∇ ·E

]
=
[

0
a2σ/ε

]
−
[

ε1ψ

ε2φ

]
.

The correction potentials ψ and φ are for numerical di-
vergence cleaning purposes. Taking the divergence of
the evolution equation for B gives the system

∂t

[
∇ ·B

ψ

]
+
[

b1∇2ψ

a1∇ ·B

]
=
[

0
−ε1ψ

]
.

To eliminate ψ take the Laplacian of the second equation
and get a telegraph equation for ∇ ·B:

∂tt∇ ·B−b1a1∇
2
∇ ·B+ ε1∂t∇ ·B = 0.

To eliminate B take the time derivative of the second
equation and get a telegraph equation for ψ:

∂ttψ−b1a1∇
2
ψ+ ε1∂tψ = 0.

Taking the divergence of the evolution equation for E and
using ∂tσ+∇ ·J = 0 gives the system

∂t

[
(∇ ·E−σ/ε)

φ

]
+
[

b2∇2φ

a2(∇ ·E−σ/ε)

]
=
[

0
−ε2φ

]
.

This has the same form as for the magnetic field, so:

(
∂tt −a2b2∇

2 + ε2b2∂t
)
(∇ ·E−σ/ε) = 0,(

∂tt −a2b2∇
2 + ε2∂t

)
φ = 0.
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3 Eigenstructure with correction po-
tentials

With correction potentials Maxwell’s equations in a vac-
uum assert

∂t

[
B
E

]
+
[

c1∇×E+b1∇ψ

−c2∇×B+b2∇φ

]
=
[

0
0

]
,

∂t

[
ψ

φ

]
+
[

a1∇ ·B
a2∇ ·E

]
+
[

ε1ψ

ε2φ

]
= 0.

For SI units c1 = 1 and c2 = c2; for Gaussian units, c1 = c
and c2 = c. Customarily a1 = a2 = (χc)2 and b1 = b2 = 1.

In one dimension, ignoring the source terms, this be-
comes four decoupled systems:

∂t

(
Bx
ψ

)
+∂x

(
b1ψ

a1Bx

)
= 0,

∂t

(
Ex
φ

)
+∂x

(
b2φ

a2Ex

)
= 0,

∂t

(
By
Ez

)
−∂x

(
c1Ez
c2By

)
= 0,

∂t

(
Bz
Ey

)
+∂x

(
c1Ey
c2Bz

)
= 0.

In matrix form the correction potential systems read(
Bx
ψ

)
t
+
(

0 b1
a1 0

)
·
(

Bx
ψ

)
x
= 0,(

Ex
φ

)
t
+
(

0 b2
a2 0

)
·
(

Ex
φ

)
x
= 0.

To find the eigenstructure, we row reduce e.g.(
c b1
a1 c

)
·
(

Bx
ψ

)′
= 0.

The eigenvalues are

c1 =±
√

b1a1 =±χc.

Corresponding left and right eigenvectors are(
Bx
ψ

)′
right

=

(
±1√

a1
b1

)
,

(
Bx
ψ

)′
left

=
1
2

(
±1√

b1
a1

)
,

or customarily(
Bx
ψ

)′
right

=
(
±1
χc

)
,

(
Bx
ψ

)′
left

=
1
χc

(
±χc

1

)
.

That is, the RΛL diagonalization is(
0 1

(χc)2 0

)
=
(
−1 1
χc χc

)(
−χc

χc

)
1

2χc

(
−χc 1
χc 1

)
,

or in general

(
0 b1
a1 0

)
=

(
−1 1√

a1
b1

√
a1
b1

)(
−c1

c1

)
1
2

−1
√

b1
a1

1
√

b1
a1

 ,

4 Telegraph equation

Consider the telegraph equation

utt −a2uxx +2εaut = 0.

Seek a solution u = e−rteikx. Substituting gives

r2 +a2k2−2εar = 0.

So

r = aε±
√

(aε)2− (ak)2

= aε

(
1±
√

1− (k/ε)
2
)

= aε

(
1± i

√
(k/ε)

2−1
)

For a given wavelength λ = 2π/k the overall rate of decay
is the minimum of the real parts of r:

r0 =:

 aε if |k|>= ε,

aε

(
1−
√

1− (k/ε)
2
)

if |k|<= ε.


Sketch r0 as a function of |k| (or r0/(aε) as a function
of |k|/ε). For |k| > ε the rate of advection is ω/|k| :=

a
√

(|k|/ε)
2−1/(|k|/ε) → a as |k|/ε → ∞. The peak rate

of decay that wavelength k can experience is for ε = |k|.
Higher values of ε neither damp this frequency effec-
tively nor convect it. This suggests allowing ε to vary
with time in order to disperse and damp all frequencies,
e.g. ε(t) = ε0 sin2 (aε0t), where aε0 is the desired rate of
damping of high frequencies. For the correction poten-
tials what happens if we replace ε1ψ with some maybe
nonlinear f (ψ,∇ψ)? The challenge is to damp low fre-
quencies.
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