Waves in Maxwell's Equations

by E. Alec Johnson, rewritten Dec 2010

1 Light waves

Recall Maxwell's equations in a vacuum:

$$
\begin{array}{ll}
\partial_{t} B+c_{1} \nabla \times \mathbf{E}=0, & \nabla \cdot \mathbf{B}=0, \\
\partial_{t} E-c_{2} \nabla \times \mathbf{B}=0, & \nabla \cdot \mathbf{E}=0 .
\end{array}
$$

For SI units $c_{1}=1$ and $c_{2}=c^{2}$; for Gaussian units, $c_{1}=c$ and $c_{2}=c$.

In one dimension this becomes two decoupled systems:

$$
\begin{aligned}
& \partial_{t}\binom{B_{\mathrm{y}}}{E_{\mathrm{z}}}-\partial_{\mathrm{x}}\binom{c_{1} E_{\mathrm{z}}}{c_{2} B_{\mathrm{y}}}=0, \\
& \partial_{t}\binom{B_{\mathrm{z}}}{E_{\mathrm{y}}}+\partial_{\mathrm{x}}\binom{c_{1} E_{\mathrm{y}}}{c_{2} B_{\mathrm{z}}}=0 .
\end{aligned}
$$

In matrix form these read:

$$
\begin{aligned}
& \binom{B_{\mathrm{y}}}{E_{\mathrm{z}}}_{t}-\left(\begin{array}{cc}
0 & c_{1} \\
c_{2} & 0
\end{array}\right) \cdot\binom{B_{\mathrm{y}}}{E_{\mathrm{z}}}_{\mathrm{x}}=0, \\
& \binom{B_{\mathrm{z}}}{E_{\mathrm{y}}}_{t}+\left(\begin{array}{cc}
0 & c_{1} \\
c_{2} & 0
\end{array}\right) \cdot\binom{B_{\mathrm{z}}}{E_{\mathrm{y}}}_{\mathrm{x}}=0,
\end{aligned}
$$

To find the eigenstructure, we row reduce the systems

$$
\begin{aligned}
& \left(\begin{array}{cc}
c & -c_{1} \\
-c_{2} & c
\end{array}\right) \cdot\binom{B_{\mathrm{y}}}{E_{\mathrm{z}}}^{\prime}=0, \\
& \left(\begin{array}{cc}
c & c_{1} \\
c_{2} & c
\end{array}\right) \cdot\binom{B_{\mathrm{z}}}{E_{\mathrm{y}}}^{\prime}=0 .
\end{aligned}
$$

The eigenvalues are

$$
c= \pm c_{0}, \quad \text { where } c_{0}:=\sqrt{c_{1} c_{2}} .
$$

Left and right eigenvectors for $c= \pm c_{0}$ are

$$
\begin{aligned}
& \binom{B_{\mathrm{y}}}{E_{\mathrm{z}}}_{\text {right }}^{\prime}=\binom{\mp 1}{\sqrt{\frac{c_{2}}{c_{1}}}}, \quad\binom{B_{\mathrm{y}}}{E_{\mathrm{z}}}_{\text {left }}^{\prime}=\frac{1}{2}\binom{\mp 1}{\sqrt{\frac{c_{1}}{c_{2}}}}, \\
& \binom{B_{\mathrm{z}}}{E_{\mathrm{y}}}_{\text {right }}^{\prime}=\binom{ \pm 1}{\sqrt{\frac{c_{2}}{c_{1}}}}, \quad\binom{B_{\mathrm{z}}}{E_{\mathrm{y}}}_{\text {left }}^{\prime}=\frac{1}{2}\binom{ \pm 1}{\sqrt{\frac{c_{1}}{c_{2}}}} .
\end{aligned}
$$

That is, the $R \Lambda L$ diagonalization is

$$
\left(\begin{array}{cc}
0 & c_{1} \\
c_{2} & 0
\end{array}\right)=\left(\begin{array}{cc}
-1 & 1 \\
\sqrt{\frac{c_{2}}{c_{1}}} & \sqrt{\frac{c_{2}}{c_{1}}}
\end{array}\right)\left(\begin{array}{cc}
-c_{0} & \\
& c_{0}
\end{array}\right) \frac{1}{2}\left(\begin{array}{cc}
-1 & \sqrt{\frac{c_{1}}{c_{2}}} \\
1 & \sqrt{\frac{c_{1}}{c_{2}}}
\end{array}\right)
$$

and

$$
\left(\begin{array}{cc}
0 & -c_{1} \\
-c_{2} & 0
\end{array}\right)=\left(\begin{array}{cc}
1 & -1 \\
\sqrt{\frac{c_{2}}{c_{1}}} & \sqrt{\frac{c_{2}}{c_{1}}}
\end{array}\right)\left(\begin{array}{cc}
-c_{0} & \\
& c_{0}
\end{array}\right) \frac{1}{2}\left(\begin{array}{cc}
1 & \sqrt{\frac{c_{1}}{c_{2}}} \\
-1 & \sqrt{\frac{c_{1}}{c_{2}}}
\end{array}\right)
$$

2 Light waves with correction potentials

Following [1], to attempt to enforce the divergence constraints we can use correction potentials.

$$
\begin{aligned}
& \partial_{t}\left[\begin{array}{l}
\mathbf{B} \\
\mathbf{E}
\end{array}\right]+\left[\begin{array}{c}
c_{1} \nabla \times \mathbf{E}+b_{1} \nabla \psi \\
-c_{2} \nabla \times \mathbf{B}+b_{2} \nabla \phi
\end{array}\right]=\left[\begin{array}{c}
0 \\
-\mathbf{J} / \varepsilon
\end{array}\right], \\
& \partial_{t}\left[\begin{array}{l}
\psi \\
\phi
\end{array}\right]+\left[\begin{array}{l}
a_{1} \nabla \cdot \mathbf{B} \\
a_{2} \nabla \cdot \mathbf{E}
\end{array}\right]=\left[\begin{array}{c}
0 \\
a_{2} \sigma / \varepsilon
\end{array}\right]-\left[\begin{array}{l}
\varepsilon_{1} \psi \\
\varepsilon_{2} \phi
\end{array}\right] .
\end{aligned}
$$

The correction potentials ψ and ϕ are for numerical divergence cleaning purposes. Taking the divergence of the evolution equation for \mathbf{B} gives the system

$$
\partial_{t}\left[\begin{array}{c}
\nabla \cdot \mathbf{B} \\
\psi
\end{array}\right]+\left[\begin{array}{l}
b_{1} \nabla^{2} \psi \\
a_{1} \nabla \cdot \mathbf{B}
\end{array}\right]=\left[\begin{array}{c}
0 \\
-\varepsilon_{1} \psi
\end{array}\right] .
$$

To eliminate ψ take the Laplacian of the second equation and get a telegraph equation for $\nabla \cdot \mathbf{B}$:

$$
\partial_{t t} \nabla \cdot \mathbf{B}-b_{1} a_{1} \nabla^{2} \nabla \cdot \mathbf{B}+\varepsilon_{1} \partial_{t} \nabla \cdot \mathbf{B}=0 .
$$

To eliminate \mathbf{B} take the time derivative of the second equation and get a telegraph equation for ψ :

$$
\partial_{t t} \psi-b_{1} a_{1} \nabla^{2} \psi+\varepsilon_{1} \partial_{t} \psi=0
$$

Taking the divergence of the evolution equation for \mathbf{E} and using $\partial_{t} \sigma+\nabla \cdot \mathbf{J}=0$ gives the system

$$
\partial_{t}\left[\begin{array}{c}
(\nabla \cdot \mathbf{E}-\sigma / \varepsilon) \\
\phi
\end{array}\right]+\left[\begin{array}{c}
b_{2} \nabla^{2} \phi \\
a_{2}(\nabla \cdot \mathbf{E}-\sigma / \varepsilon)
\end{array}\right]=\left[\begin{array}{c}
0 \\
-\varepsilon_{2} \phi
\end{array}\right] .
$$

This has the same form as for the magnetic field, so:

$$
\begin{aligned}
& \left(\partial_{t t}-a_{2} b_{2} \nabla^{2}+\varepsilon_{2} b_{2} \partial_{t}\right)(\nabla \cdot \mathbf{E}-\sigma / \varepsilon)=0, \\
& \left(\partial_{t t}-a_{2} b_{2} \nabla^{2}+\varepsilon_{2} \partial_{t}\right) \phi=0
\end{aligned}
$$

3 Eigenstructure with correction potentials

With correction potentials Maxwell's equations in a vacuum assert

$$
\begin{aligned}
& \partial_{t}\left[\begin{array}{l}
\mathbf{B} \\
\mathbf{E}
\end{array}\right]+\left[\begin{array}{c}
c_{1} \nabla \times \mathbf{E}+b_{1} \nabla \psi \\
-c_{2} \nabla \times \mathbf{B}+b_{2} \nabla \phi
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right], \\
& \partial_{t}\left[\begin{array}{l}
\psi \\
\phi
\end{array}\right]+\left[\begin{array}{l}
a_{1} \nabla \cdot \mathbf{B} \\
a_{2} \nabla \cdot \mathbf{E}
\end{array}\right]+\left[\begin{array}{l}
\varepsilon_{1} \psi \\
\varepsilon_{2} \phi
\end{array}\right]=0 .
\end{aligned}
$$

For SI units $c_{1}=1$ and $c_{2}=c^{2}$; for Gaussian units, $c_{1}=c$ and $c_{2}=c$. Customarily $a_{1}=a_{2}=(\chi c)^{2}$ and $b_{1}=b_{2}=1$.

In one dimension, ignoring the source terms, this becomes four decoupled systems:

$$
\begin{aligned}
& \partial_{t}\binom{B_{\mathrm{x}}}{\psi}+\partial_{\mathrm{x}}\binom{b_{1} \psi}{a_{1} B_{\mathrm{x}}}=0, \\
& \partial_{t}\binom{E_{\mathrm{x}}}{\phi}+\partial_{\mathrm{x}}\binom{b_{2} \phi}{a_{2} E_{\mathrm{x}}}=0, \\
& \partial_{t}\binom{B_{\mathrm{y}}}{E_{\mathrm{z}}}-\partial_{\mathrm{x}}\binom{c_{1} E_{\mathrm{z}}}{c_{2} B_{\mathrm{y}}}=0, \\
& \partial_{t}\binom{B_{\mathrm{z}}}{E_{\mathrm{y}}}+\partial_{\mathrm{x}}\binom{c_{1} E_{\mathrm{y}}}{c_{2} B_{\mathrm{z}}}=0 .
\end{aligned}
$$

In matrix form the correction potential systems read

$$
\begin{aligned}
& \binom{B_{\mathrm{x}}}{\psi}_{t}+\left(\begin{array}{cc}
0 & b_{1} \\
a_{1} & 0
\end{array}\right) \cdot\binom{B_{\mathrm{x}}}{\psi}_{\mathrm{x}}=0, \\
& \binom{E_{\mathrm{x}}}{\phi}_{t}+\left(\begin{array}{cc}
0 & b_{2} \\
a_{2} & 0
\end{array}\right) \cdot\binom{E_{\mathrm{x}}}{\phi}_{\mathrm{x}}=0 .
\end{aligned}
$$

To find the eigenstructure, we row reduce e.g.

$$
\left(\begin{array}{cc}
c & b_{1} \\
a_{1} & c
\end{array}\right) \cdot\binom{B_{\mathrm{x}}}{\psi}^{\prime}=0
$$

The eigenvalues are

$$
c_{1}= \pm \sqrt{b_{1} a_{1}}= \pm \chi c
$$

Corresponding left and right eigenvectors are

$$
\binom{B_{\mathrm{x}}}{\psi}_{\text {right }}^{\prime}=\binom{ \pm 1}{\sqrt{\frac{a_{1}}{b_{1}}}}, \quad\binom{B_{\mathrm{x}}}{\psi}_{\text {left }}^{\prime}=\frac{1}{2}\binom{ \pm 1}{\sqrt{\frac{b_{1}}{a_{1}}}}
$$

or customarily

$$
\binom{B_{\mathrm{x}}}{\psi}_{\text {right }}^{\prime}=\binom{ \pm 1}{\chi c}, \quad\binom{B_{\mathrm{x}}}{\psi}_{\text {left }}^{\prime}=\frac{1}{\chi c}\binom{ \pm \chi c}{1}
$$

That is, the $R \wedge L$ diagonalization is

$$
\left(\begin{array}{cc}
0 & 1 \\
\left(\chi_{c}\right)^{2} & 0
\end{array}\right)=\left(\begin{array}{cc}
-1 & 1 \\
\chi_{c} & \chi_{c}
\end{array}\right)\left(\begin{array}{cc}
-\chi_{c} & \\
& \chi_{c}
\end{array}\right) \frac{1}{2 \chi_{c}}\left(\begin{array}{cc}
-\chi_{c} & 1 \\
\chi_{c} & 1
\end{array}\right)
$$

or in general

$$
\left(\begin{array}{cc}
0 & b_{1} \\
a_{1} & 0
\end{array}\right)=\left(\begin{array}{cc}
-1 & 1 \\
\sqrt{\frac{a_{1}}{b_{1}}} & \sqrt{\frac{a_{1}}{b_{1}}}
\end{array}\right)\left(\begin{array}{cc}
-c_{1} & \\
& c_{1}
\end{array}\right) \frac{1}{2}\left(\begin{array}{cc}
-1 & \sqrt{\frac{b_{1}}{a_{1}}} \\
1 & \sqrt{\frac{b_{1}}{a_{1}}}
\end{array}\right)
$$

4 Telegraph equation

Consider the telegraph equation

$$
u_{t t}-a^{2} u_{x x}+2 \varepsilon a u_{t}=0
$$

Seek a solution $u=e^{-r t} e^{i k x}$. Substituting gives

$$
r^{2}+a^{2} k^{2}-2 \varepsilon a r=0 .
$$

So

$$
\begin{aligned}
r & =a \varepsilon \pm \sqrt{(a \varepsilon)^{2}-(a k)^{2}} \\
& =a \varepsilon\left(1 \pm \sqrt{1-(k / \varepsilon)^{2}}\right) \\
& =a \varepsilon\left(1 \pm i \sqrt{(k / \varepsilon)^{2}-1}\right)
\end{aligned}
$$

For a given wavelength $\lambda=2 \pi / k$ the overall rate of decay is the minimum of the real parts of r :

$$
r_{0}=:\left\{\begin{array}{ll}
a \varepsilon & \text { if }|k|>=\varepsilon \\
a \varepsilon\left(1-\sqrt{1-(k / \varepsilon)^{2}}\right) & \text { if }|k|<=\varepsilon
\end{array}\right\}
$$

Sketch r_{0} as a function of $|k|$ (or $r_{0} /(a \varepsilon)$ as a function of $|k| / \varepsilon)$. For $|k|>\varepsilon$ the rate of advection is $\omega /|k|:=$ $a \sqrt{(|k| / \varepsilon)^{2}-1} /(|k| / \varepsilon) \rightarrow a$ as $|k| / \varepsilon \rightarrow \infty$. The peak rate of decay that wavelength k can experience is for $\varepsilon=|k|$. Higher values of ε neither damp this frequency effectively nor convect it. This suggests allowing ε to vary with time in order to disperse and damp all frequencies, e.g. $\varepsilon(t)=\varepsilon_{0} \sin ^{2}\left(a \varepsilon_{0} t\right)$, where $a \varepsilon_{0}$ is the desired rate of damping of high frequencies. For the correction potentials what happens if we replace $\varepsilon_{1} \psi$ with some maybe nonlinear $f(\psi, \nabla \psi)$? The challenge is to damp low frequencies.

References

[1] A. Dedner and F. Kemm and D. Kröner and C.-D. Munz and T. Schnitzer and M. Wesenberg, Hyperbolic divergence cleaning for the MHD equations, J. Comp. Phys., 2002.

