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1 Light waves

Recall Maxwell’s equations in a vacuum:

dB+cVxE=0, V.-B=0,
QE—cVxB=0, V-E=0.

For SI units ¢; = 1 and ¢, = ¢?; for Gaussian units, ¢ = ¢
and ¢ = c.

In one dimension this becomes two decoupled systems:
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In matrix form these read:
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To find the eigenstructure, we row reduce the systems
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The eigenvalues are

¢ ==cg, where co:=+/cic3.

Left and right eigenvectors for ¢ = 4¢( are
(By>’ _<3F1 B\ 1
E, right_ \/§> 7 (EZ) left_ 2
B,\’ +1 B\’ 1 [ £l
<EY)right_ < 2) ’ <Ey>left_ 2 < %

That is, the RAL diagonalization is
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2 Light waves with correction poten-
tials

Following [1], to attempt to enforce the divergence con-
straints we can use correction potentials.
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The correction potentials v and ¢ are for numerical di-
vergence cleaning purposes. Taking the divergence of
the evolution equation for B gives the system
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To eliminate y take the Laplacian of the second equation
and get a telegraph equation for V - B:
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9,V -B—b1a;V’V-B+¢€9,V-B=0.

To eliminate B take the time derivative of the second
equation and get a telegraph equation for y:

oY — b1a1V2\|I+£1atl|I =0.

Taking the divergence of the evolution equation for E and
using d,6 + V- J = 0 gives the system
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This has the same form as for the magnetic field, so:

(an — a2b2V2 + Ezbga[) (V -E— 0/8) =0,
(9 — azb2V* +€20;) ¢ = 0.



3 Eigenstructure with correction po-
tentials

With correction potentials Maxwell’s equations in a vac-
uum assert
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For S units ¢; = 1 and ¢, = ¢2; for Gaussian units, ¢; = ¢
and ¢ = c. Customarily a; = ay = (yc)? and by = by = 1.

In one dimension, ignoring the source terms, this be-
comes four decoupled systems:
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In matrix form the correction potential systems read
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To find the eigenstructure, we row reduce e.g.
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The eigenvalues are
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Corresponding left and right eigenvectors are
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That is, the RAL diagonalization is
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or in general
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4 Telegraph equation
Consider the telegraph equation
Uy — Aty + 2€au; = 0.
Seek a solution u = e~""¢**. Substituting gives
r? 4+ a’k* — 2ear = 0.
So

r=ae+/(ag)? — (ak)?

= ae <1 +4/1— (k/g)2>
= ae <1 +iv/(k/e)* — 1>

For a given wavelength A = 21/ the overall rate of decay
is the minimum of the real parts of r:

ag if |k| >=¢,

0= a8<l— 1—(k/8)2> if [k <=e.

Sketch rg as a function of [k| (or ro/(.) as a function
of |k|/e). For |k| > € the rate of advection is /)y :=

ar/ (k| /e)* = 1/(jk|/e) — @ as |k|/e — oo. The peak rate
of decay that wavelength k can experience is for € = [k|.
Higher values of € neither damp this frequency effec-
tively nor convect it. This suggests allowing € to vary
with time in order to disperse and damp all frequencies,
e.g. £(t) = gosin® (agot), where agy is the desired rate of
damping of high frequencies. For the correction poten-
tials what happens if we replace €,y with some maybe
nonlinear f(y,Vy)? The challenge is to damp low fre-
quencies.
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