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1 Ideal MHD eigenstructure

1.1 Linearization

Recall the equations of smooth MHD in primitive variables:

ρ,t +∇ · (ρu) = 0,

ρ(u,t +u ·∇u)+∇p = µ−1
0 (∇×B)×B,

p,t +u ·∇p+ γp∇ ·u = 0,
B,t +∇× (B×u) = 0,

where we have used Ampere’s law J= µ0∇×B and the comma
notation is used for partial differentiation. We remark that the
pressure evolution equation is a form of the thermal energy
evolution equation, which is obtained from energy conserva-
tion by subtracting kinetic energy balance (obtained by dot-
ting u with the momentum equation) and subtracting magnetic
field energy balance (obtained by dotting B with the magnetic
field evolution equation). It implies that entropy is invariant
along particle paths.

To facilitate linearization, we apply the product rule and
rewrite these equations in a form that contains no derivatives
of products. (We vertically align according to differentiated
variable to prepare to put the equations in matrix form.)

0 = ρ,t +u ·∇ρ+ρ∇ ·u,

0 = u,t +u ·∇u +
1
ρ

∇p +
1

µ0ρ
B ·∇B− 1

µ0ρ
(∇B) ·B,

0 = p,t + γp∇ ·u +u ·∇p,

0 = B,t +B∇ ·u−B ·∇u +u ·∇B.

Assuming ∂2 = 0 = ∂3 implies that B1 is constant (in space
by the divergence condition ∇ ·B = 0 and in time by Faraday’s
law ∂tB+∇×E = 0) and thus gives the 1-dimensional MHD
system

ρ

u1
u2
u3
p

B2
B3


,t

+



u1 ρ 0 0 0 0 0
0 u1 0 0 1

ρ

B2
µ0ρ

B3
µ0ρ

0 0 u1 0 0 −B1
µ0ρ

0
0 0 0 u1 0 0 −B1

µ0ρ

0 γp 0 0 u1 0 0
0 B2 −B1 0 0 u1 0
0 B3 0 −B1 0 0 u1


·



ρ

u1
u2
u3
p

B2
B3


,x

=0

This is in the quasilinear form

U,t +A ·U,x = 0.

To linearize, we merely freeze the matrix entries at A0 :=
A(U0), where U0 is a background state, and replace the dif-
ferentiated state variables with perturbed versions:

Ũ,t +A0 ·Ũ,x ≈ 0, (1)

where Ũ :=U−U0.

The eigenstructure of A0 reveals waves of the linearized sys-
tem. Indeed, suppose that

A0 ·U ′ = λU ′. (2)

Then Ũ =U ′ f (x−λt) satisfies the linearized ODE (1) for any
scalar-valued differentiable function f . Typically f (x) is as-
sumed to be sin(kx), cos(kx), or eikx.

Recall that to solve eigenproblem (3), we write it as the homo-
geneous linear problem

(A0−λI) ·U ′ = 0. (3)

The eigenvalue λ is the wave speed, so we write it as λ =
u1 + c, where c represent the speed of the wave in the refer-
ence frame of the fluid.

1.2 Eigenstructure

To simplify notation and to facilitate finding left eigenvectors
later, we generalize the matrix (and make it look closer to a
“generically self-adjoint” matrix) by making the definitions

g := γp,

g∗ :=
1
ρ
,

B∗ :=
B

µ0ρ
.

Observe that gg∗ = γp
ρ
=: vs, the acoustic sound speed. We

remark that we could assume without loss of generality that

ρ = 1 = g∗ by replacing B with
√

µ−1
0 B and by choice of units

of mass. Furthermore, if we are willing to rescale time (or
space), we could also assume that vs = 1 by choice of units of
velocity.

Transforming into a frame of reference convected with the
fluid shifts the diagonal entries to zero. By choosing units of
mass appropriately, we can force ρ0 = 1 = g∗. By choosing
units of time properly, we can also force the sound speed to be
one, i.e., vs = 1 = g. The result of such a redimensionalization
is to make the lower right 6× 6 matrix symmetric. It easily
follows that the matrix as a whole has real eigenvalues and a
full set of eigenvectors. Thus the system is hyperbolic, and
its general solution is a superposition of “eigenperturbations”
propagating at a speed equal to the corresponding eigenvalue.

1



So our formally near-self-adjoint system is̃

ρ

u1
u2
u3
p

B2
B3


,t

+



u1 1 0 0 0 0 0
0 u1 0 0 g∗ B∗2 B∗3
0 0 u1 0 0 −B∗1 0
0 0 0 u1 0 0 −B∗1
0 g 0 0 u1 0 0
0 B2 −B1 0 0 u1 0
0 B3 0 −B1 0 0 u1


0

·

̃

ρ

u1
u2
u3
p

B2
B3


,x

= 0.

By Galilean relativity, we can assume without loss of gener-
ality that the background state satisfies u1 = 0. By rotation of
coordinates in dimensions 2 and 3, we may also assume that
the background state satisfies B3 = 0 and B2 ≥ 0.

So to find the eigenstructure, we row-reduce the system

−c 1 0 0 0 0 0
0 −c 0 0 g∗ B∗2 0
0 0 −c 0 0 −B∗1 0
0 0 0 −c 0 0 −B∗1
0 g 0 0 −c 0 0
0 B2 −B1 0 0 −c 0
0 0 0 −B1 0 0 −c


0

·



ρ

u1
u2
u3
p

B2
B3



′

= 0;

avoiding division will give eigenvectors with polynomial com-
ponents and a polynomial dispersion relation for the eigenval-
ues. The dispersion relation can then be used to rewrite any
polynomial in c in terms of polynomials of lesser order than
the order of the dispersion relation. This technique is useful in
simplifing expressions for the norms of the eigenvectors.

This system decouples into the following subsystems:[
c B∗1

B1 c

]
0
·
(

u3
B3

)′
= 0

and 
−c 1 0 0 0
0 −c 0 g∗ B∗2
0 0 −c 0 −B∗1
0 g 0 −c 0
0 B2 −B1 0 −c


0

·


ρ

u1
u2
p

B2


′

= 0.

The Alfvén system on the left gives rise to a pair of “oblique”
Alfvén waves. The magnetosonic system on the right gives
rise to an entropy wave and pairs of fast and slow magne-
tosonic waves.

The velocities of the oblique Alfvén waves are given by cA =
±
√

B1B∗1 =±
B1√
µ0ρ

, and the corresponding eigenvectors are(
u3
B3

)′
∝

(
c
∓B1

)
∝

(
1

∓√µ0ρ

)
Notice that the pertubations are in the plane perpendicular to
the direction of propagation.

To find the characteristic polynomial and right eigenvectors of
the magnetosonic system, we row-reduce to upper triangular

form. We leave out the first row and column for now, since
nothing needs to be done there.

Our system is
−c 0 g∗ B∗2
0 −c 0 −B∗1
g 0 −c 0

B2 −B1 0 −c


0

·


u1
u2
p

B2


′

= 0,

Notice that the pertubations are in the plane spanned by the di-
rection of propagation and the magnetic field. Notice also that
just as for Alfvén waves, B′2 and u′2 (which are in the direction
perpendicular to wave propagation) are in a ratio equal to the
ratio of the wave speed, and that just as for sound waves, p′

and u′1 (which are related to perturbations parallel to the direc-
tion of motion) are in a ratio equal to the ratio of g to the sound
speed.

This system is similar to
g 0 −c 0
0 c 0 B∗1
0 gB1 −cB2 cg
0 0 gg∗− c2 gB∗2


0

·


u1
u2
p

B2


′

= 0,

which is similar to
g 0 −c 0
0 c 0 B1
0 0 c2B2 g(B1B∗1− c2)
0 0 gg∗− c2 gB∗2


0

·


u1
u2
p

B2


′

= 0.

For the determinant to vanish, the determinant of the lower
right 2-by-2 matrix must vanish, i.e., the last two equations
must be redundant.

Taking the determinant of the lower right 2-by-2 system yields
the dispersion relation

(c2−B1B∗1)(c
2−gg∗)− c2B2B∗2 = 0, i.e.,

c4− c2(gg∗+B ·B∗)+gg∗B1B∗1 = 0,

i.e.,

c4− c2(v2
s + v2

A)+ v2
s c2

A = 0,

where

v2
A := B ·B∗ = B2

µ0ρ
= (Alfvén speed),

c2
A := B1B∗1 =

B2
1

µ0ρ
= (oblique Alfvén wave speed), and

v2
s := gg∗ =

γp
ρ

= (sound speed).

Note that c2
A = v2

A cos2 θ, where θ is the angle between B and
the positive x-axis.
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(a) v2
A < v2

s (b) v2
A > v2

s

Figure 1: MHD wave speeds as a function of the angle θ between the magnetic field B and the direction of propagation k.

The roots of the quadratic dispersion relation in c2 define the
fast and slow magnetosonic speeds:

(c2− c2
f )(c

2− c2
s ) = 0.

So c2
f ,c

2
s = (1/2)

[
(v2

s + v2
A)±

√
(v2

s + v2
A)

2−4v2
s c2

A

]
, an ex-

pression of which we make little direct use, preferring to work
directly with the polynomial dispersion relation.

Observe that we can rewrite the magnetosonic dispersion rela-

tion as

(c2− v2
s )(c

2− v2
A) = v2

s v2
A sin2

θ.

Recall also the formula for the Alfvén speed,

c2
A = v2

A cos2
θ.

Graphing these relations between wave speed and sin2
θ for

the generic cases 0 < v2
A < v2

s and v2
A > v2

s > 0 characterizes
the general relationship among MHD plasma wave speeds (see
Figure 1).

Recall the eigenvector system
c −1 0 0 0
0 g 0 −c 0
0 0 c 0 B1
0 0 0 c2B2 g(B1B∗1− c2)
0 0 0 gg∗− c2 gB∗2


0

·


ρ

u1
u2
p

B2


′

= 0,

that is,
c −1 0 0 0
0 γp 0 −c 0
0 0 c 0 B1
0 0 0 c2B2 γp(c2

a− c2)
0 0 0 v2

s − c2 v2
s B2


0

·


ρ

u1
u2
p

B2


′

= 0.

One’s choice among the bottom two equations gives two pos-
sible ways to express the right eigenvectors:

ρ

u1
u2
p

B2


′

right

∝


cB∗2
c2B∗2

B1(gg∗− c2)
cgB∗2

c(c2−gg∗)

 ∝


c2−B1B∗1

c(c2−B1B∗1)
−cB1B2

gg∗(c2−B1B∗1)
c2B2



That is,
ρ

u1
u2
p

B2


′

right

∝


c2− c2

A
c(c2− c2

A)
−cB1B2

v2
s (c

2− c2
A)

c2B2

 .

For the left eigenvectors, transposing the system matrix and
using c to kill 1 in the first column (which assumes c 6= 0)
shows that to get the left eigenvalues we just zero out the den-
sity perturbation and swap the starred and unstarred variables:

ρ

u1
u2
p

B2


′

left

∝


0

c2B2
B∗1(gg∗− c2)

cgB2
c(c2−gg∗)

 ∝


0

c(c2−B1B∗1)
−cB∗1B∗2

gg∗(c2−B1B∗1)
c2B∗2

 .

1.3 Case B1 = 0

. . .
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1.4 Case B2 = 0

. . .

2 Alfvén waves

In the case of Alfvén waves, the fact that the wave speed
is independent of the perturbation variables suggests that we
should seek a finite-amplitude solution of the nonlinearized
MHD equations.

Recall 1-dimensional MHD in quasilinear form:

ρ

u1
u2
u3
p

B2
B3


,t

+



u1 1 0 0 0 0 0
0 u1 0 0 g∗ B∗2 B∗3
0 0 u1 0 0 −B∗1 0
0 0 0 u1 0 0 −B∗1
0 g 0 0 u1 0 0
0 B2 −B1 0 0 u1 0
0 B3 0 −B1 0 0 u1


·



ρ

u1
u2
u3
p

B2
B3


,x

= 0.

Without linearizing, we seek a solution for which ρ and
p are constant. The evolution equation for ρ then implies
that u1 is constant in space, and hence constant in time by
global momentum conservation. The evolution equation for
u1 in turn simplifies to ∂tu1 +B∗2∂xB2 +B∗3∂xB3 = 0, i.e., 0 =
∂x(B2

2+B2
3), which says that B2

2+B2
3 must be constant in space.

Transforming into the frame of reference of the fluid, we may
say without loss of generality that u1 = 0.

So our system simplifies to(
u2
B2

)
,t
+

[
0 −B∗1
−B1 0

]
·
(

u2
B2

)
,x
= 0

and (
u3
B3

)
,t
+

[
0 −B∗1
−B1 0

]
·
(

u3
B3

)
,x
= 0.

This is just a pair of wave equations with speeds c =
±
√

B1B∗1 =±
B1√
µ0ρ

and corresponding right- and left-traveling
waves(

ui
Bi

)
= f±i (x− ct)

(
∓1√
µ0ρ

)
,

where the f±i need to satisfy the requirement that ( f+2 )2 +
( f+3 )2 and ( f−2 )2 +( f−3 )2 are constant.

For a ready such pair of functions, choose f2(x) = u0 cos(kx)
and f3(x) = u0 sin(kx). This gives the solution(

u2
u3

)
=∓u0

(
cosθ

sinθ

)
and B1

B2
B3

= B0

 0
cosθ

sinθ

+

B1
0
0

 ,

where

u0 =
B0√
µ0ρ

, θ := kx−ωt, and
ω

k
= c =

±B1√
µ0ρ

.

For this solution the components of u and B perpendicular to
the x-axis are rotationally polarized and aligned or anti-aligned
depending on whether the wave is propagating in the negative
or positive direction.

4


