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1 Basic Equations

If we neglect spatial derivatives, then the two-fluid-Maxwell
equations reduce to an ODE. The purpose of this note is to
solve this source term ODE; we assume throughout that
spatial derivatives are zero. Neglecting spatial derivatives,
the two-fluid equations are the source terms of Maxwell’s
equations coupled to the source terms of the gas-dynamics
equations for each species.

Maxwell’s equations assert that the magnetic field is con-
stant and that the displacement current balances the net elec-
trical current:

∂tB = 0,

∂tE = −J/ε0 = e(neue − niui)/ε0.

The density evolution equations assert that the densities
(whether mass density or particle density or charge density)
remain constant:

∂tρs = 0, i.e., ∂tns = 0, i.e., ∂tσs = 0.

The momentum equation for species s is

∂t(ρsus) =
qs
ms

ρs(E + us ×B) + Rs.

We will neglect the collisional drag force Rs. Since densities
are constant, we can divide by density.

We thus get the electro-momentum system

∂tE = e(neue − niui)/ε0,

∂tui =
e

mi
(E + ui ×B),

∂tue =
−e
me

(E + ue ×B).

(1)

Evolution of energy is implied by evolution of momentum
(which implies evolution of kinetic energy) and evolution of
pressure (which is equivalent to evolution of thermal energy).
Note that pressure evolution is temperature evolution times
the constant density.

The five-moment pressure evolution equation

(3/2)∂tps = Qs

says that pressure is constant in the absence of interspecies
collisional heating due to resistive drag and thermal equilibra-
tion. If the drag force is non-negligible, and assuming that
the resistive drag coefficient is a function of temperature, the
electro-momentum system coupled to pressure evolution com-
prises a minimally closed system. Neglecting collisional terms,
pressure evolution simply asserts that pressure is constant.

2 The electro-momentum system

Written in matrix form, the non-resistive electro-momentum
system (1) reads

∂t

Eui

ue

 =

 0 − eni

ε0
ene

ε0
e
mi

− eB
mi
× 1 0

− e
me

0 eB
me
× 1

Eui

ue

 .

We can make this ODE antisymmetric by rescaling. For
a generic rescaling, suppose

E = ẼE0,

ui = ũiui0,

ue = ũeue0.

Making this substitution gives the system

∂t

 Ẽũi

ũe

 =

 0 − eni

ε0

ui0

E0

ene

ε0

ue0

E0
e
mi

E0

ui0
− eB

mi
× 1 0

− e
me

E0

ue0
0 eB

me
× 1


 Ẽũi

ũe

 .
If we require this system to be antisymmetric then

E0

ui0

=

√
ρi
ε0

and
E0

ue0

=

√
ρe
ε0
,

(where recall that ρi = mini and ρe = mene) and the system
becomes

∂t

 Ẽũi

ũe

 =

 0 −ωi 1 ωe 1

ωi 1 −Bi × 1 0
−ωe 1 0 −Be × 1

 Ẽũi

ũe

 ,
where each entry in the block matrix represents a 3×3 matrix
and where

ωi = e

√
ni
ε0mi

and ωe = e

√
ne
ε0me

denote the ion and electron plasma frequencies and

Bi =
eB

mi
and Be =

−eB
me

are the magnetic field rescaled for ions and electrons. Their
magnitudes are the ion gyrofrequency Ωi := |Bi| and the elec-
tron gyrofrequency Ωe := |Be|.

3 Solution of perpendicular system

To solve the system we decompose into parallel and perpen-
dicular components. Without loss of generality assume that
B is in the direction of the third axis. Then our system de-
couples into a parallel system

∂t

 Ẽ3

ũi3

ũe3

 =

 0 −ωi ωe

ωi 0 0
−ωe 0 0

 Ẽ3

ũi3

ũe3

 ,
and a perpendicular system

∂t


Ẽ1

Ẽ2

ũi1

ũi2

ũe1

ũe2

=


0 0 −ωi 0 ωe 0
0 0 0 −ωi 0 ωe

ωi 0 0 Ωi 0 0
0 ωi −Ωi 0 0 0
−ωe 0 0 0 0 −Ωe

0 −ωe 0 0 Ωe 0




Ẽ1

Ẽ2

ũi1

ũi2

ũe1

ũe2

 .

1



This is an antisymmetric matrix and therefore has imagi-
nary eigenvalues and orthogonal eigenvectors. If we view the
first and second components of each vector as real and imag-
inary parts, then this becomes a 3×3 complex linear differen-
tial equation with a skew hermitian coefficient matrix:

∂t

 Ẽ⊥ũi⊥
ũe⊥

 =

 0 −ωi ωe

ωi −iΩi 0
−ωe 0 iΩe

 Ẽ⊥ũi⊥
ũe⊥

 , (2)

where we have used the natural isomorphism between
SO(2,R) and complex numbers

a+ ib←→
[
a −b
b a

]
.

Observe that the parallel system is the special case of this
system when the magnetic field is zero.

To generalize, suppose we want to solve the constant-
coefficient linear ODE

x′ = A · x.

Seeking a solution x(t) = v exp(λt) (where v 6= 0) leads to the
eigenvector problem

vλ = A · v, i.e., (A− 1λ) · v = 0.

We recall the theory of skew-Hermitian and Hermitian ma-
trices. Since A is skew-Hermitian (i.e. A∗ = −A, where ∗ de-
notes the conjugate of the transpose), B := iA is Hermitian
(i.e. B∗ = B).

The eigenvalues of a Hermitian matrix are real. Indeed,
assuming without loss of generality that v∗v = 1,

λ = v∗vλ = v∗Bv = v∗B∗v = (v∗Bv)∗ = (v∗vλ)∗

= v∗vλ∗ = λ∗,

and eigenvectors for different eigenvalues are orthogonal:

v∗2v1λ1 = v∗2Bv1 = v∗2B
∗v1 = (v∗1Bv2)∗ = (v∗1v2λ2)∗

= v∗2v1λ2,

which says that either v∗2v1 = 0 or λ1 = λ2.
Note that if (v, ω) is an eigenvector-eigenvalue pair for B

then (v, iω) is an eigenvector-eigenvalue pair for A.
To find the eigenstructure we solve

0 = (A− iω) · v =

−iω −ωi ωe

ωi −i(Ωi + ω) 0
−ωe 0 i(Ωe − ω)

 · v. (3)

If this has a nontrivial solution then the first row is a linear
combination of the second two and we can ignore it. The sec-
ond two equations then show that an eigenvector must be a
multiple of the form

v =

iβeβiωiβe
ωeβi

 ,

where

βi := Ωi + ω and

βe := Ωe − ω,

as is confirmed (for the last two rows) by computing (A−iω)·v;
the relation implied by the first row reveals the characteristic
equation. Alternatively, the calculation

A · v =

 0 −ωi ωe

ωi −iΩi 0
−ωe 0 iΩe

 ·
iβeβiωiβe
ωeβi


=

 −ω2
i βe + ω2

eβi
iβi(ωiβe)− iΩi(ωiβe)
−i(ωeβi)βe + iΩe(ωeβi)

 = viω =

iβeβiωiβe
ωeβi

 iω
shows that ω must satisfy

βeβiω = ω2
i βe − ω2

eβi,

ω = βi − Ωi,

ω = −βe + Ωe.

The last two equations confirm that

βi = Ωi + ω,

βe = Ωe − ω,

and substituting these two relationships into the first equa-
tion gives the characteristic equation that an eigenvalue must
satisfy:

(Ωe − ω)(Ωi + ω)ω = ω2
i (Ωe − ω)− ω2

e (Ωi + ω).

Expanding in ω and collecting like terms gives

0 = ω3 + (Ωi − Ωe)ω
2 − (ΩiΩe + ω2

p)ω, (4)

where we have used that ω2
i Ωe−ω2

eΩi = 0 and that the plasma

frequency is ωp :=
√
ω2
i + ω2

e . Thus, ω = 0 or

ω = 1
2 (Ωe − Ωi)± 1

2

√
(Ωe − Ωi)2 + 4(ΩiΩe + ω2

p),

That is,

ω =
Ωe − Ωi

2
±

√(
Ωe + Ωi

2

)2

+ ω2
p . (5)

For hydrogen plasmas, Ωe ≈ 1860Ωi, so

ω ≈ 1
2Ωe ±

√
( 1
2Ωe)2 + ω2

p for Ωe ≈ 1860Ωi (hydrogen)

(6)

and

ω = ±
√

Ω2
i + ω2

p for Ωe = Ωi (pair plasma) (7)

Squaring and simplifying (5) yields

ω2 = ω2
p +

Ω2
e + Ω2

i

2
± (Ωe − Ωi)

√(
Ωe + Ωi

2

)2

+ ω2
p,

which agrees with the cutoff limits on page 116 of Goedbloed
and Poedts.1

1Hans Goedbloed and Stefaan Poedts. Principles of Magnetohydrodynamics: With Applications to Laboratory and Astrophysical Plasmas.
Cambridge University Press, 2004.

2



Note that the eigenvector v =

iβeβiωiβe
ωeβi

 is never zero; in-

deed, ωi and ωe are strictly positive, and βi = Ωi + ω and
βe = Ωe − ω cannot both be zero since otherwise Ωi = −ω
and Ωe = ω, contradicting that Ωi and Ωe are both strictly
positive.

By the theory of Hermitian matrices, a full set of orthogo-
nal eigenvectors must exist. Since each eigenvector has a one-
dimensional eigenspace, there must be three distinct eigenval-
ues ω.

Decompose v into real and imaginary parts:

v = a+ ib =

 0
ωiβe
ωeβi

+ i

βeβi0
0

 .
Observe that the real and imaginary parts are orthogonal.
Note that

−iv = b− ia =

βeβi0
0

− i
 0
ωiβe
ωeβi


is also an eigenvector with eigenvalue iω and that these two
eigenvectors are orthogonal: v∗(−iv) = 2a · b = 0. The
eigenvector-eigenvalue pair (v, iω) corresponds to the solution

v exp(iωt) = (a+ ib)(cosωt+ i sinωt)

= (a cosωt− b sinωt) + i(b cosωt+ a sinωt)

=

−βeβi sinωt
ωiβe cosωt
ωeβi cosωt

+ i

βeβi cosωt
ωiβe sinωt
ωeβi sinωt

 ,
and the eigenvector-eigenvalue pair (−iv, iω) corresponds to
the solution

−iv exp(iωt) = (b− ia)(cosωt+ i sinωt)

= (b cosωt+ a sinωt) + i(b cosωt− a sinωt)

=

βeβi cosωt
ωiβe sinωt
ωeβi sinωt

+ i

 βeβi sinωt
−ωiβe cosωt
−ωeβi cosωt

 .
Observe that in each of these solutions the ion and electron
currents are in phase and the electric field is 90 degrees out
of phase relative to them.

These two solutions are independent when interpreted (in
SO(2,R)) as real solutions:

Ẽ1

Ẽ2

ũi1

ũi2

ũe1

ũe2

 =


−βeβi sinωt
βeβi cosωt
ωiβe cosωt
ωiβe sinωt
ωeβi cosωt
ωeβi sinωt

 and


Ẽ1

Ẽ2

ũi1

ũi2

ũe1

ũe2

 =


βeβi cosωt
βeβi sinωt
ωiβe sinωt
−ωiβe cosωt
ωeβi sinωt
−ωeβi cosωt

 .

Evaluated at time 0 these solutions are
Ẽ1

Ẽ2

ũi1

ũi2

ũe1

ũe2

 =


0

βeβi
ωiβe

0
ωeβi

0

 and


Ẽ1

Ẽ2

ũi1

ũi2

ũe1

ũe2

 =


βeβi

0
0

−ωiβe
0

−ωeβi

 .

Note that orthogonality of complex solutions is equivalent
to orthogonality of real solutions. So we have found three
distinct imaginary eigenvalues and 6 orthogonal eigenvectors
for the original 6× 6 antisymmetric matrix.

4 Parallel system

The parallel system

∂t

 Ẽ3

ũi3

ũe3

 =

 0 −ωi ωe

ωi 0 0
−ωe 0 0

 Ẽ3

ũi3

ũe3


is the special, singular case of the perpendicular system (2)
when the magnetic field is zero.

In this case the system (3) becomes

0 = (A− iω) · v =

−iω −ωi ωe

ωi −iω 0
−ωe 0 −iω

 · v.
So eigenvalue/eigenvector pairs are

ω = 0, v =

 0
ωe

ωi

 and ω = ±ωp, v =

 iω
ωi

−ωe

 ,
where ωp :=

√
ω2
i + ω2

e is the plasma frequency.

To get real solutions we look at the real and imagi-
nary parts of one of the complex-conjugate pair of solutions.
Choose ω = ωp. Write

a+ ib =

 0
ωi

−ωe

+ i

ωp

0
0

 .
Analogous to (3), the real and imaginary parts are real solu-
tions:

v exp(iωpt) = (a+ ib)(cosωpt+ i sinωpt)

= (a cosωpt− b sinωpt) + i(b cosωpt+ a sinωpt)

=

−ωp sinωpt
ωi cosωpt
−ωe cosωpt

+ i

 ωp cosωpt
ωi sinωpt
−ωe sinωpt

 .
So three orthogonal eigensolutions are 0

ωe

ωi

 ,
−ωp sinωpt
ωi cosωpt
−ωe cosωpt

 ,
 ωp cosωpt
ωi sinωpt
−ωe sinωpt

 .
Evaluated at time 0 these solutions are 0

ωe

ωi

 ,
 0
ωi

−ωe

 ,
ωp

0
0

 .
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