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Abstract

We propose a Gaussian-BGK relaxation closure for the heat flux (and viscos-
ity) for Gaussian-moment two-fluid MHD. We argue that this is the simplest
fluid model that can be expected to resolve the pressure tensor near the X-
point for fast antiparallel magnetic reconnection: two-fluid effects are needed
for collisionless fast reconnection, extended moments are needed to resolve
the strong agyrotropy that arises in the pressure tensor near the X-point, and
nonzero viscosity and heat flux are necessary to admit sustained reconnection
without developing a temperature singularity near the X-point.
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Background: two-fluid models

The starting point for deriving two-species plasma models is the kinetic-Maxwell system, which
evolves the particle densities fs(t , x, v) and the electromagnetic field (B,E). The standard model
of gas dynamics is the Maxwellian-moment (5-moment) model, which evolves the 5 physically
conserved moments of the kinetic equation. The Gaussian-moment (10-moment) model instead
evolves all 10 quadratic monomial moments.

Kinetic-Maxwell system
Kinetic equations:
∂t fi + v ·∇xfi + ai ·∇vfi = Ci + Cie

∂t fe + v ·∇xfe + ae ·∇vfe = Ce + Cei

Lorentz force law
ai =

qi
mi

(E + v × B)

ae = qe
me

(E + v × B)

Maxwell’s equations:
∂t B + ∇ × E = 0

∂t E − c2∇ × B = J/ε0

∇ · B = 0, ∇ · E = σ/ε0

σ =
∑

s

qs

ms

∫
fs dv

J =
∑

s

qs

ms

∫
vfs dv

Gaussian(10)-moment model:
moments: ρs

ρsus
Ps

 =

∫  1
v
cc

 fs dv

cs := v − us

closure:

Rs =

∫
cscs Cs dv[

Rs
Qs

]
=

∫ [
v

cscs

]
Csp dv

qs =

∫
cscscs fs dcs

Maxwell(5)-moment model:

ps = 1
3 tr Ps, Qs = 1

2 tr Qs, qs = 1
2 tr qs.

MHD models assume quasineutrality (σ ≈ 0) and neglect the displacement current ∂t E and can be
derived assuming the limit c → ∞. MHD models thus evolve a single density evolution equation
and a single momentum evolution equation. Two-fluid MHD evolves separate energy equations for
each species.
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Background: two-fluid MHD models

MHD models assume quasineutrality (σ ≈ 0) and neglect the displacement
current ∂tE and can be derived assuming the limit c → ∞. MHD models thus
evolve a single density evolution equation and a single momentum evolution
equation. Two-fluid MHD evolves separate energy evolution equations for each
species.
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Part A (Model Requirements)

Define a symmetric 2D problem to be a 2D problem symmetric under 180-degree rotation about
the origin (0). In our simulations of symmetric 2D reconnection the origin is an X-point of the
magnetic field:

This first half of the poster identifies requirements for fast magnetic reconnection by analyzing the
solution near the X-point. We argue that, for accurate resolution of the electron pressure tensor
near the X-point, a fluid model of fast reconnection (1) must resolve two-fluid effects, (2) should
resolve strong pressure anisotropy, and (3) must admit viscosity and heat flow.

All equations in part A assume a steady-state solution to a symmetric 2D
problem and are evaluated at the origin (0).
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1. Ohm’s law: fast reconnection needs two-fluid effects.

Ohm’s law is net electrical current evolution solved for the electric field. As-
suming symmetry across the X-point, the steady-state Ohm’s law evaluated at
the X-point reads

E‖ = (η ·J)‖ + 1
eρ [∇ · (mePi − miPe)]

‖ at 0 for ∂t = 0.

Fast reconnection is nearly collisionless, so the resistive term η ·J should be
negligible.

For pair plasma, the pressure term is zero unless the pressure tensors of the
two species are allowed to differ. In fact, kinetic simulations of collisionless
antiparallel reconnection admit fast rates of reconnection [BeBh07], and we
get similar rates using a two-fluid Gaussian-moment model of pair plasma with
pressure isotropization [Jo11].
For hydrogen plasma, the electron pressure term chiefly supports reconnection,
and the Hall term mi−me

eρ J×B, although zero at the X-point, appears to accelerate
the rate of reconnection [ShDrRoDe01].
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2. Pressure anisotropy at X-point needs an extended-moment model.

For antiparallel reconnection, the pressure tensor becomes strongly agyrotropic
in the immediate vicinity of the X-point [Br11, ScGr06]. Stress closures for the
Maxwellian-moment model assume that the pressure tensor is nearly isotropic.
In contrast, the assumptions of the Gaussian-moment model (that the distribu-
tion of particle velocities is nearly Gaussian) can hold even for strongly anisotropic
pressure. In practice, we have found good agreement of the Gaussian-moment
two-fluid model with kinetic simulations [Jo11, JoRo10]:

Reconnection rates are approximately correct.
Reconnection is primarily supported by pressure agyrotropy.
There is qualitatively good resolution of the electron pressure tensor near
the X-point even when the pressure becomes strongly agyrotropic.
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3. Theory: steady collisionless reconnection requires viscosity & heat
flux

For a symmetric 2D problem, the origin is a stagnation point. Informally, we
show that steady reconnection is not possible without heat production near the
stagnation point and that a mechanism for heat flow is therefore necessary to
prevent a heating singularity at the stagnation point. Formally, define a solu-
tion to be nonsingular if density and pressure are finite, strictly positive, and
smooth; we show that a steady-state solution to a symmetric 2D problem must
be singular if viscosity or heat flux is absent.
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3a. Steady collisionless reconnection requires viscosity.

By Faraday’s law the rate of reconnection is E‖(0) (the out-of-plane electric field
evaluated at the origin). Momentum evolution implies

E‖(0) =
−R‖

s

σs
+

(∇ ·Ps)
‖

σs
at 0 for ∂t = 0, (1)

where σs is charge density. For collisionless reconnection the drag force Rs
should be negligible. If the pressure is isotropric or gyrotropic in a neighbor-
hood of 0, then ∇ ·Ps is zero. That is, inviscid models do not admit steady
reconnection [HeKuBi04].
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3b. Theorem: Steady collisionless reconnection requires heat flux.

Viscous models generate heat near the X-point. Symmetry implies that the X-
point is a stagnation point. An adiabatic fluid model provides no mechanism for
heat to dissipate away from the X-point. As a result, viscous adiabatic mod-
els develop a temperature singularity near the X-point when used to simulate
sustained reconnection. Numerically, when we simulated the GEM magnetic
reconnection challenge problem using an adiabatic Gaussian-moment model
with pressure isotropization (viscosity), shortly after the peak reconnection rate
temperature singularities developed near the X-point. Theoretically, we have
the following steady-state result:
Theorem [Jo11]. For a 2D problem invariant under 180-degree rotation about 0
(the origin), steady-state nonsingular magnetic reconnection is impossible with-
out heat flux for a Maxwellian-moment or Gaussian-moment model that uses
linear (gyrotropic) closure relations that satisfy a positive-definiteness condition
and respect entropy (in the Maxwellian limit).
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Proof (Maxwellian case)

Let ′ denote a partial derivative (∂x or ∂y ) evaluated at 0. Conservation of mass
and pressure evolution imply the entropy evolution equation:

psus ·∇s = 2e◦
s :µs :e◦

s −∇ ·qs + Qs, (2)

where e◦
s is deviatoric strain, −P◦

s = 2µs :e◦
s is deviatoric stress, and µs is the

viscosity tensor. Assume that qs = 0 near 0. Evaluating equation (2) at 0 and in-
voking symmetries yields e◦

s :µs :e◦
s = −Qs. Assume that µ is positive-definite.

Assume that thermal heat exchange conserves energy: Qi + Qe = 0. So Qs
must be zero, so e◦

s = 0 at 0. Evaluating the second derivative of equation (2) at
0 and invoking symmetries yields (e◦

s )
′ :µ : (e◦

s )
′ = −Q′′

s , which by conservation
of energy (Q′′

i + Q′′
e = 0) must be nonpositive for one of the two species (which

we take to be s) for differentiation along two orthogonal directions. Using that
µ is positive-definite, (e◦

s )
′ = 0. Therefore, −(P◦

s )
′ = 2(µs :e◦

s )
′ = 0. Since this

relation holds for two orthogonal directions, ∇Ps = 0 at 0, so ∇ ·Ps = 0 at 0. So
equation (1) says that E‖(0) = 0, i.e., there is no reconnection.

A similar proof can be given for the Gaussian case by differentiating the Gaussian-
moment entropy evolution equation.
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Proof (Gaussian case)

Let ′ denote a partial derivative (∂x or ∂y ) evaluated at 0. Conservation of mass
and pressure evolution imply the entropy evolution equation:

nsus ·∇s = −2τ−1P−1
s :C :P◦

s − P−1
s :∇ ·qs + P−1

s :Qs, (3)

where Rs := τ−1C :P◦ is traceless. Assume that qs = 0 near 0. Evaluating

equation (3) at 0 and invoking symmetries yields

0 = −2τ−1(P−1
s ) :C : (P◦

s ) + P−1
s :Qs. (4)

Assume that C satisfies the positive-definiteness criterion −(P−1
s ) :C : (P◦

s ) ≥ 0.
Assume that a linear closure is used for Qi and Qe (thermal heat exchange)
in terms of Pi and Pe which respects total gas-dynamic entropy at 0. Then
P◦

s = 0 at 0. Evaluating the second derivative of equation (3) at 0 and invoking
symmetries yields

0 = −2τ−1(P−1
s )′ :C : (P◦

s )
′ + (P−1

s :Qs)
′′. (5)

Using that C is positive-definite, (P◦
s )

′ = 0 for a species s. That is, ∇Ps = 0 at 0,
so ∇ ·Ps = 0 at 0.
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Part B (Model)

In this second half we present, as the simplest model satisfying these
requirements, a Gaussian-BGK closure of Gaussian-moment two-fluid
MHD. A Gaussian-BGK collision operator relaxes the particle velocity
distribution toward a Gaussian distribution. We assume a Gaussian-BGK
collision operator and use a Chapman-Enskog expansion to derive a
closure for Maxwellian-moment and Gaussian-moment MHD.
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Equations of (Maxwellian-moment) two-fluid MHD

Magnetic field:

∂t B +∇× E = 0, ∇ ·B = 0

Ohm’s law:

E = η · J + B × u + mi−me
eρ J × B

+ 1
eρ∇ · (mePi − miPe)

+ mime
e2ρ

[
∂t J +∇ ·

(
uJ + Ju − mi−me

eρ JJ
)]

Mass and momentum:

∂tρ+∇ · (uρ) = 0

ρdt u +∇ · (Pi + Pe + Pd) = J × B

Pressure evolution:

3
2 ndt Ti + pi∇ ·ui + P◦

i :∇ui +∇ ·qi = Qi

3
2 ndt Te + pe∇ ·ue + P◦

e :∇ue +∇ ·qe = Qe

Closures:

P◦
s = −2µs : e◦

s

qs = −ks ·∇Ts

(Qs = Qf
s + Qt

s)

Definitions:

dt = ∂t + us ·∇

J = µ−1
0 ∇× B

e◦
s = (∇us)

◦

ρ = (mi + me)n

ps = nTs

Ps = psI+ P◦
s

Pd = ρi wiwi + ρewewe

wi =
meJ
eρ

, we = −
miJ
eρ
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Equations of Gaussian-moment two-fluid MHD

The Gaussian-moment model evolves full pressure tensors rather than scalar
pressure; the equations are identical to those of Maxwellian-moment two-fluid
MHD except for the following.

Pressure tensor evolution

ndtTi + Sym2(Pi ·∇ui) +∇ ·qi =
qi
mi

Sym2(Pi × B) + Ri +Qi

ndtTe + Sym2(Pe ·∇ue) +∇ ·qe =
qe
me

Sym2(Pe × B) + Re +Qe

Closures:

Rs = −P◦
s /τs

qs = − 2
5 Ks

··· Sym3 (π ·∇Ts)

(Qs = Qf
s +Qt

s)

Definitions:

π =
P
p
=

T
T

Sym2 = X 7→ X + X T

Sym3 =
{

thrice symmetric part
of third-order tensor

}
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Implicit intraspecies closure (viscosity and heat flux)

Assuming a Gaussian-BGK intraspecies collision operator and performing a
Chapman-Enskog expansion about an assumed distribution yields closures for
deviatoric pressure and heat flux.

For the Maxwell-moment model we expand about a Maxwellian distribution and
obtain implicit closures for heat flux and deviatoric pressure [Woods04]:

q + $̃b × q = −k∇T , (6)
P◦ + Sym2($b × P◦) = −µ2e◦, (7)

where µ is viscosity, k is heat conductivity, $ := τωc is the gyrofrequency per
momentum diffusion rate, $̃ := $/Pr is the gyrofrequency per thermal diffusion
rate, and Pr is the Prandtl number; the gyrofrequency is ωc := q|B|/m, and
b := B/|B|.
For the Gaussian-moment model we expand about a Gaussian distribution and
obtain the relaxation closure Rs = −P◦

s /τs and an implicit closure relation for the
heat flux tensor [Jo11, McGr08]:

q + Sym3($̃b × q) = − 2
5 k Sym3 (π ·∇T) . (8)
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Explicit intraspecies closure (viscosity and heat flux)

In this frame the species index s is suppressed. All prod-
ucts of tensors are splice symmetric products satisfying
2(AB)j1 j2k1k2

:= Aj1k1
Bj2k2

+ Bj1k1
Aj2k2

and

3!(ABC)j1 j2 j3k1k2k3

:=Aj1k1
Bj2k2

Cj3k3
+ Aj1k1

Cj2k2
Bj3k3

+Bj1k1
Aj2k2

Cj3k3
+ Bj1k1

Cj2k2
Aj3k3

+Cj1k1
Aj2k2

Bj3k3
+ Cj1k1

Bj2k2
Aj3k3

(so permute the letters and leave the indices unchanged).

Definitions:

δ‖ := bb,

δ⊥ := I − bb,

δ∧ := b × I.

Solving equations (6–7) for q and P◦ gives

q = −k k̃ ·∇T ,

P◦ = −2µµ̃ : e◦
,

where [Woods04]

k̃ =δ‖ + 1
1+$̃2 (δ⊥ − $̃δ∧),

µ̃ = 1
2 (3δ

2
‖ + δ

2
⊥) + 2

1+$2 (δ⊥δ‖ − $δ∧δ‖)

+ 1
1+4$2 ( 1

2 (δ
2
⊥ − δ

2
∧) − 2$δ∧δ⊥).

Solving equation (8) for q gives [Jo11]

q = − 2
5 kK̃ ··· Sym3(π ·∇T),

K̃ =
(
δ

3
‖ + 3

2 δ‖(δ
2
⊥ + δ

2
∧)

)
+ 3

1+$̃2

(
δ⊥δ

2
‖ − $̃δ∧δ

2
‖

)
+ 3

1+4$̃2

(
1
2 (δ

2
⊥ − δ

2
∧)δ‖ − 2$̃δ∧δ⊥δ‖

)
+ (k0δ

3
⊥ + k1δ∧δ

2
⊥ + k2δ

2
∧δ⊥ + k3δ

3
∧),

where

k3 :=
−6$̃3

1 + 10$̃2 + 9$̃4
= −(2/3)$̃−1 + O($̃−3),

k2 :=
6$̃2 + 3$̃(1 + 3$̃2)k3

1 + 7$̃2
= O($̃−2),

k1 :=
−3$̃ + 2$̃k2

1 + 3$̃2
= −$̃

−1 + O($̃−3),

k0 := 1 + $̃k1 = O($̃−2).

For computational efficiency instead use splice products,

(AB)′j1 j2k1k2
:= Aj1k1

Bj2k2
,

(ABC)′j1 j2 j3k1k2k3
:= Aj1k1

Bj2k2
Cj3k3

,

and symmetrize at the end, e.g.

qs = − 2
5 ks Sym

(
K̃′

s
··· Sym3 (π ·∇Ts)

)
.
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Interspecies closure (friction and thermal equilibration)

For collisionless reconnection the interspecies collisional terms should not be necessary for fast
reconnection and should be small in comparison to the intraspecies collisional terms. Nevertheless,
for completeness we give a linear relaxation closure.

For thermal equilibration one can relax toward
the average temperature

Qt
s =

3
2 K n2(T0 − Ts),

where 2T0 := Ti + Te, or toward an average
temperature tensor

Qt
s = K n2(T0 − Ts),

where 2T0 := T̃i + T̃e and

T̃s := ν′TsI+ νTs,

where ν′ + ν = 1, 0 ≤ ν′ ≤ 3
2 and ν′ might be

1 or Pr−1. Note that the equilibration rate is nK .

Frictional heating can be allocated among
species in inverse proportion to particle mass:

Qf := Qf
i + Qf

e = η : JJ

miQf
i = meQf

e

The frictional tensor heating also must be allo-
cated among directions:

Qf = (α‖ − α⊥)Sym2(η · JJ) + α⊥η : JJ I,

Qf
i =

me
me+mi

Qf,

Qf
e = mi

me+mi
Qf.

where α‖ + 2α⊥ = 1 and 0 ≤ α‖ ≤ 1.
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Relaxation coefficients

Diffusion

µs =τsnTs

2
5 ks =

µs

ms Prs

Relaxation periods

τ0 :=
12π3/2

ln Λ

(
ε0

e2

)2

n τ
′
ss := τ0

√
ms det(Ts)

Braginskii

τ
Br
i := τ

′
ii

τ
Br
e := 1√

2
τ
′
ee

τi = .96τ ′
ii

τe = .52τ ′
ee

Pri = .61 ≈ 2
3

Pre = .58 ≈ 2
3

Note that we define the relaxation periods in terms of
√

det(Ts) rather than T 3/2 in order to prevent the closure
for the heat flux tensor from violating positivity.

Neglectable (interspecies)

K−1 := τ0
mime√

2

(
Ti
mi

+ Te
me

)3/2

2τε,Br
ei = (K n)−1 ≈ τ

Br
e

mi

me

η0 :=
me

e2nτBr
e

, η‖ := .51η0, lim
$→∞

η⊥ = η0

Braginskii’s closures are based on Coulomb collisions. In collisionless systems, relaxation is not really mediated
by Coulomb collisions, and interspecies relaxation terms should be smaller than this.
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