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Linear stability

Linearization yields analytical solutions
near an equilibrium which we can test
for stability.

Consider a dynamical system:

dtX = F (X ).

Suppose that X0 is an equilibrium:

F (X0) = 0.

Taylor expansion gives:

dtX ′ ≈ F,X ·X ′,

where X ′ = X − X0 is the perturbation
from equilibrium and F,X is the matrix
of partial derivatives ∂F j

∂X k and where
Taylor says that the approximation is
exact if F,X is evaluated at X0 + θX ′ for
the right value 0 ≤ θ ≤ 1.

The linearized system is

dtX ′ = A ·X ′,

where the matrix of constant
coefficients is evaluated at the
equilibrium state:

A := F,X (X0).

If A has an eigenvalue with positive
real part then X0 is a (linearly)
unstable equilibrium; else X0 is
linearly stable.

We use the comma-subscript notation
for partial derivatives in these slides.
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Linearizing a balance law

Consider a hyperbolic balance law

(CON) Q,t + F j(Q),x j = S(Q),

where there is an implicit sum over
the spatial index j .
Remark: These slides concern
one-dimensional plane waves.
Therefore, you can choose to
erase all repeated indices (so read
F j as F and x j as x) and assume
that ∂y = 0 = ∂z .

Background states:
We define a background state
(or an equilibrium) to be a
time-independent solution
Q0(x).
A uniform background state is
independent of space:
S(Q0) ≡ 0.

To linearize system (CON), we first put it
in quasilinear form using the chain rule:

(QL) Q,t + F j
,Q ·Q,x j = S;

To complete the linearization, we
Taylor-expand the source term:

S ≈ S(Q0) + S,Q ·Q′,

where Q′ := Q −Q0, and freeze the
coefficients by evaluating them at Q0:

Ai := F j
,Q(Q0) and

S := S,Q(Q0).

This gives the constant-coefficient
linearized system

(LIN) Q′,t + Ai ·Q′,x j = S ·Q′.
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Wave and stability analysis

Linearization is used to study fluid models in three different ways:
1 To study linear waves we assume a uniform background state that

maximizes entropy.
In the two-fluid case, maximum entropy means zero drift (ui = ue), equilibrated temperatures
(Ti = Te), and charge neutrality (ni = ne). Any MHD uniform background state maximizes
entropy, since MHD maximizes local entropy. We assume without loss of generality that the
background fluid velocity is zero.

2 For two-fluid linear stability analysis, we assume a uniform background
state that does not maximize entropy (e.g. assigning different velocities to
the two fluids). See e.g. Nicholson Chapter 7 (section 7.13).
Remark: the two-fluid model is relevant to small scales, and is used to study microscopic
instabilities where it is reasonable to assume a uniform background state.

3 For MHD linear stability analysis, one assumes a nonuniform background
state.
Remark: MHD applies to large scales, and is used to study macroscopic stability of
nonuniform large-scale equilibrium configurations — see Nicholson Chapter 8.

This document is concerned with uniform background states and focuses on
linear waves (case 1).
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Primitive variables (versus conserved)

Conserved state variables are densities of
conserved quantities and are used to write the
equations in balance form.

For MHD, conserved variables are

Q(MHD) := (ρ, ρu, EMHD,B),

where EMHD := E + 1
2µ0
‖B‖2 is the sum of

gas-dynamic energy and magnetic field energy.

For two-fluid plasma, conserved variables are

Q(2fluid) := (ρi, ρiui, Ei, ρe, ρeue, Ee,B,E).

Primitive state variables are simpler
quantities and are used to write the equations
in a simpler system.

For MHD, primitive variables are

P(MHD) := (ρ,u, p,B),

where p does not include the magnetic

pressure pB := |B|2
2µ0

.

For two-fluid plasma, primitive variables are

Q(2fluid) := (ρi,ui, pi, ρe,ue, pe,B,E).

Pressure is proportional to thermal energy
density:

p = 2
3

(
E − 1

2ρ|u|
2
)
.
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Linearization in primitive variables (versus conserved)

To convert the hyperbolic balance law

Q,t + F j
,x j = S

to primitive variables, multiply by P,Q and use the
chain rule to get:

P,t + P,Q · F
j
,x j = P,Q · S =: S̃

The chain rule yields the quasilinear system in
the variables P:

P,t + Aj
P · P,x j = S̃,

where Aj
P = P,Q · F

j
,P .

For a uniform background state, the fully
linearized primitive system is

P′,t + Aj
P · P

′
,x j = SP · P′,

where SP := S̃,P and Aj
P are evaluated at the

background state P0 and P′ := P − P0.

Conjugate eigenstructure. The
coefficient matrices of the primitive
system are conjugates of the
coefficient matrices of the conserved
system and therefore have the same
eigenvalues and equivalent
eigenvectors:

Aj
P = P,Q · F

j
,P

= P,Q · F
j
,Q · Q,P .

= P,Q · Ai
Q · Q,P , and

SP : = S̃,P
= P,Q · S,Q · Q,P .
= P,Q · SQ · Q,P .

Note: P,Q and Q,P are inverse
matrices, since by the chain rule
P,Q · Q,P = P,P = I.
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Work in primitive variables for easy linearization.

To put evolution equations for P in quasilinear form, apply differentiation
rules until no spatial derivatives remain except derivatives of components
of P.

Remark 1: We will see that linear waves are revealed by the eigenstructure
e.g. of Aj

P . Quasilinear form is usually simpler in primitive variables, and it
is usually easier to find the eigenstructure for Aj

P than for Ai
Q .

Remark 2: Since

Ai
Q = P,Q · Aj

P ·Q,P and
SQ = P,Q · SP ·Q,P

it is possible (and sometimes convenient) to find the eigenstructure for the
conserved variables without ever having to express the equations in
conserved variables!
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Waves: eigenstructure of the dispersion relation

Dispersion relation for a hyperbolic balance
law

As we have seen, linearization in any set
of state variables is equivalent to any
other set, whether conserved or primitive.

Henceforth let U denote an arbitrary set of
state variables.

Consider a linearized system with
constant coefficients:

U,t + Ai · U,x j = S · U,

where constant-coefficient matrices are
used for A and S.

Seek eigensolutions of the form

U = U0ei(k · x−ωt).

Then:

U,t = −iωU.

U,x = ikU.

Get the dispersion relation(
kÂ+ iS

)
· U0 = ωU0,

where Â := k̂ ·A.

This is an eigenvalue problem.

Without loss of generality, we will choose
k̂ to be aligned with the x axis.

For each choice of k (and for each choice
of U0) there exists a set of up to N
eigenvalues ω, where N is the number of
variables in U.

For dispersion relations, the background
state is characterized by the number
density n0, the equilibrium temperature
T0, and the magnetic field vector B0.
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Hyperbolic conservation laws yield nondispersive shocks (Ideal MHD)

For hyperbolic conservation
laws such as MHD, the source
term S is zero, so the
dispersion relation is simply
kÂ · U0 = ωU0. That is:

(DIS) Â · U0 =
(
ω
k

)
U0 ;

the eigenvalues λ = ω
k

represent wave speeds and
are independent of k .

Discontinuous shocks can form:
Nondispersion. (DIS) says that for
hyperbolic conservation laws, wave
speeds are determined entirely by the
state and are independent of the wave
frequency. That is, hyperbolic
conservation laws are nondispersive.
Shock formation. A major consequence
of nondispersion is that discontinuous
shocks can form; wave speeds are
determined by state value alone and are
not affected by the development of steep
gradients, so nonlinear waves simply
steepen until they become shocks. The
presence of discontinuous shocks in ideal
MHD makes it fundamentally different
from the two-fluid model.
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Shocks and finite-amplitude waves (Ideal MHD)

Assuming 1D and leaving in
conservation form

∂tQ + Fx = 0

reveals the jump condition that MHD
shock waves must satisfy:

dt
∫ x1

x0
Q + [F ]x1

x0
= 0, so

.
s [Q]s+εs−ε = [F ]s+εs−ε as ε→ 0,

where s(t) is shock position. That is,
the jump in flux across a shock equals
shock speed times the jump in the
conserved state variables. This says
that, in the frame of reference of the
shock, conserved material enters and
emerges from the shock at the same
rate. This is called the
Rankine-Hugoniot jump condition.

Remarks
The jump condition holds for
conserved variables only, not
primitive variables.
For MHD, assuming 1D without
linearizing reveals
finite-amplitude linear (Alfven)
and nonlinear waves. Nonlinear
waves generically develop
shocks.
Shocks locally appear 1D and so
are essentially a 1D
phenomenon.
In fact, 1D waves characterize
fluid behavior.
What defines a wave? A wave is
a propagating modulation in
value.
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Two-fluid waves: limiting eigenstructure

Recall the general form of the
two-fluid Euler-Maxwell
dispersion relation:(

kÂ+ iS
)
· U0 = ωU0.

In the two-fluid case, given a
background state, there is a
different set of wave speeds
for every choice of wave
number k .

The two-fluid dispersion
relation can be characterized
in terms of high-frequency
and low-frequency limits.

Limiting cases
k →∞, ω →∞: hyperbolic conservation law (S = 0)

As k →∞, the source term vanishes and the dispersion
relation is

Â · U0 =
(
ω
k

)
U0;

for the two-fluid Maxwell system, this represents the limit
where there is no source term and the system decouples
into gas dynamics for each species and propagation of
light in a vacuum. The eigenvalues λ = ω

k become
independent of k and approach the ion and electron
sound wave speeds and the speed of light.

k → 0, ω > 0: source term system (A = 0)
As k → 0, the dispersion relation is the eigenstructure
problem for the source term ODE:

S · U0 = −iωU0;

for the two-fluid model, S has imaginary eigenvalues,
resulting in undamped oscillations called Langmuir
waves.
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Waves: eigenstructure of the dispersion relation (diffusive)

Dispersion for a parabolic balance law
Given a linearized system with constant
coefficients:

U,t + Ai · U,x j = S · U + Gik U,x j xk ,

where constant-coefficient matrices are
used for A, S, and G,

seek eigensolutions of the form

U = U0ei(k · x−ωt).

Get the dispersion relation(
kÂ+ iS− ik2Ĝ

)
· U0 = ωU0,

where Â := k̂ ·A and Ĝ := k̂k̂ :G.

Recall: WLOG we can choose k̂ = x̂ . So
to analyze waves we can assume
one-dimensional systems:

∂t U + Â · Ux = S · U + Ĝ · Uxx .

Remarks

Diffusive terms arise from viscosity, heat
flux, and resistivity:

P◦ ≈ −2µ :∇u◦,
q ≈ −k ·∇T ,

E ≈ B× u + η · J.

Viscosity and heat flux arise when
intraspecies collisions are not
instantaneous: τss 6= 0. Resistivity arises
when interspecies collisions occur:
τ−1

ie 6= 0.

Diffusion damps high-frequency waves. For
k →∞,

Ĝ · U0 ≈ λU0, where λ =
iω
k2
.

So U ≈ U0eik · xe−λk2t , which decays if Ĝ
has positive eigenvalues; if Ĝ has a
negative eigenvalue then the closure is
antidiffusive, and the model is ill-posed.
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MHD waves

Linearized MHD waves are
perturbations on a
background state with given
density, temperature, and
magnetic field.

Given a choice of
background state, wave
speeds and eigenstructure is
determined by the direction k̂
of the magnetic field. After
shifting and rescaling, the
solution is entirely
determined by two
parameters:

1 k̂ · B̂ = cos θ (θ is the
angle between the
magnetic field and wave
direction) and

2 β :=
p0
pB

=
( vt,s

vA,s

)2 (the

ratio of pressure to
magnetic pressure

pB := |B|2
2µ0

).

The most important angles are perpendicular and parallel to the
magnetic field. In these cases, MHD has three fundamental
waves:

1 Alfvén waves are transverse oscillations that propagate
parallel to the magnetic field at speed vA =

√
2pB/ρ.

2 Pure sound waves are compressive waves that propagate
parallel to the magnetic field at speed vs =

√
γp
ρ

.

3 Fast magnetosonic waves are compressive waves that
propagate perpendicular to the magnetic field at speed

vf =
√

v2
s + v2

A.

For a general direction k̂, there are three wave speeds:
1 Oblique Alfvén waves with speed cA = vA| cos θ|,
2 Slow magnetosonic waves with speed cs satisfying

0 ≤ c2
s = 1

2

[
v2

f −
√

v2
f − 4v2

s c2
A

]
≤ min{v2

A, v
2
s }

3 Fast magnetosonic waves with speed cf satisfying

vf ≥ c2
f = 1

2

[
v2

f +
√

v2
f − 4v2

s c2
A

]
≥ max{v2

A, v
2
s }

See my note, “Waves in MHD”, for a full derivation.
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MHD instabilities

MHD is used to study the stability of macroscopic plasma configurations. Con-
troling these instabilities is critical to the project of fusion energy via magnetic
confinement.

A linear analysis of an instability (e.g. sausage, kink/firehose, ballooning) pro-
ceeds by linearizing about a steady-state spatially dependent solution.

Stability can be proved by showing that all perturbations entail an increase in
free energy.

See Nicholson §8.3.
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Quasi-linearization

The two-fluid Euler Maxwell system is
the two-fluid Maxwell system without any
diffusive or collisional terms.

Maxwell’s equations:

∇ ·B = 0, ∇ ·E = σ/ε0,

∂t B +∇× E = 0,

∂t E− c2∇× B = −J/ε0.

Evolution equations:

∂tρs +∇ · (usρs) = 0,

ρsd s
t us +∇ps = σsE + Js × B

ρsd s
t es + ps∇ ·us = 0

Written in quasilinear form in the primitive variables

P := (ρi,ui, pi, ρe,ue, pe,B,E),

the 2-fluid Euler-Maxwell system is:

Maxwell’s equations:

∇ ·B = 0, ∇ ·E = 1
ε0

(
e

me
ρe − e

me
ρi

)
,

∂t B +∇× E = 0,

∂t E− c2∇× B = 1
ε0

(
e

me
ρeue − e

me
ρiui

)
,

Evolution equations:

∂tρs + us ·∇ρs + ρs∇ ·us = 0,

∂t us + us ·∇us +
1
ρ
∇ps =

qs
ms

(E + us × B),

∂t ps + us ·∇ps + γps∇ ·us = 0,

where γ := 5
3 is the adiabatic index.
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Quasi-linear gas dynamics

To identify the quasilinear matrix coefficients,
we line up derivatives.

For the ion gas dynamics equations, we have:

0 =∂tρi+ui·∇ρi+ ρi∇·ui,

si =∂t ui + ui·∇ui+
1
ρ i
∇pi,

0 =∂t pi +γpi∇·ui+ui·∇pi,

where the source term is defined by:

si : = qi
mi

(E + ui × B).

For a one-dimensional problem, 0 = ∂y = ∂z ,

so ∇ = x̂∂x and this becomes:

0 =∂tρi+u1
i ∂xρi+ ρi∂x u1

i ,

si =∂t ui + u1
i ∂x ui+

1
ρi

x̂∂x pi,

0 =∂t pi +γpi∂x u1
i + u1

i ∂x pi,

In matrix form:
ρi
u1

i
u2

i
u3

i
pi


t

+


u1

i ρi 0 0 0
0 u1

i 0 0 1
ρi

0 0 u1
i 0 0

0 0 0 u1
i 0

0 γpi 0 0 u1
i


︸ ︷︷ ︸

Calling Ai

·


ρi
u1

i
u2

i
u3

i
pi


x

=


0

si1

si2

si3

0

 =


0

qi
mi

(E1 + u2
i B3 − u3

i B2)
qi
mi

(E2 + u3
i B1 − u1

i B3)
qi
mi

(E3 + u1
i B2 − u2

i B1)

0

 .

︸ ︷︷ ︸
Calling Si

That is, formally:

∂t P i + Ai ·P i
x = Si
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Maxwell in matrix form

Maxwell’s equations are already linear:

∂t B + c1∇× E = 0,

∂t E− c2∇× B = sE,

where for SI units c1 = 1 and c2 = c2 and

sE : = e
ε0

(
ρe
me

ue − ρi
mi

ui

)
.

If 0 = ∂x = ∂y , then this is of the form

∂t PM + AM ·PM
x = SM.

Written out in full:

∂t



B1

B2

B3

E1

E2

E3

+


0 0 0 0 0 0
0 0 0 0 0 −c1
0 0 0 0 c1 0
0 0 0 0 0 0
0 0 −c2 0 0 0
0 c2 0 0 0 0


︸ ︷︷ ︸

Calling AM

·



B1

B2

B3

E1

E2

E3


,x

=



0
0
0

sE1

sE2

sE3

 =
e
ε0



0
0
0

ρe
me

u1
e −

ρi
mi

u1
i

ρe
me

u2
e −

ρi
mi

u2
i

ρe
me

u3
e −

ρi
mi

u3
i


,

This one-dimensional system is three
subsystems that are independent if
gas-dynamic quantities are prescribed:(

B1

E1

)
,t
+

[
0 0
0 0

]
·
(

B1

E1

)
,x

=

(
0

sE1

)
,(

B3

E2

)
,t
+

[
0 c1
−c2 0

]
·
(

B3

E2

)
,x

=

(
0

sE2

)
,(

B2

E3

)
,t
+

[
0 −c1
c2 0

]
·
(

B2

E3

)
,x

=

(
0

sE3

)
.
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Composite quasi-linear system
The composite quasilinear system is thus: P i

Pe

PM


,t

+

Ai 0 0
0 Ae 0
0 0 AM


,t

·

 P i

Pe

PM


,x

=

 Si

Se

SM

 .
Linearization about a uniform background state P0

approximates the source term by S̃ ≈ S̃,P · P′: Si

Se

SM

 ≈
Si

,Pi 0 Si
,M

0 Se
,Pe Se

,PM

SM
,Pi SM

,Pe 0

 ·
 P i

Pe

PM

′

,

where P′ := P − P0. More fully, using “·” for 0:

·
si

·

·
se

·

·
sE


≈



· · ·
· si

,Pi ·
· · ·

· · ·
· · ·
· · ·

· ·
si
,B si

,E
· ·

· · ·
· · ·
· · ·

· · ·
· se

,Pe ·
· · ·

· ·
se
,B se

,E
· ·

· · ·
sE
,ρi

sE
,ui

·
· · ·

sE
,ρe sE

,ue ·
· ·
· ·


·



ρi
ui
pi

ρe
ue
pe

B
E



′

Definitions:

P :=

 P i

Pe

PM


P i :=

ρi
ui
pi


Pe :=

ρe
ue
pe


PM :=

[
B
E

]

Si :=

0
si

0


Se :=

 0
se

0


SM :=

[
0
sE

]

(Definitions:)

sE :=
1
ε0

∑
α

qα
mα
ραuα

si :=
qi
mi

(E + ui × B).

Derivatives:

si
,Pi :=

qi
mi

I× B,

sE
,ρi

:=
1
ε0

qi
mi

ui,

sE
,ui

:=
1
ε0

qi
mi
ρiI,

si
,E :=

qi
mi

I,

si
,B :=

qi
mi

ui × I.

(Similar relations hold
for electrons.)

For the two-fluid dispersion relation, the uniform background state satisfies ui = ue = u0, and WLOG u0 = 0,
so si

,B = 0 = sE
,ρi

. In this case, the velocity rescaling ũα := uα/uα,0, where uα,0 :=
√
ε0/ρα, makes SP

antisymmetric, so all eigenvalues of SP are imaginary. If ui 6= ue then eigenvalues with positive real part give rise
to a two-stream instability (See Nicholson §7.13).
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Two-fluid waves

As in MHD, the waves in the two-fluid
model are determined by the choice
of density, temperature, and
magnetic field of the background
state and by the choice of wave
number k.

But characterizing waves in the
two-fluid model is much more
complicated than for MHD. Most
critically, wave speeds depend not
only on the angle between k and the
magnetic field, but also on the
magnitude of k. A dispersion
diagram (e.g. Figures 7.14 and 7.17
on page 159 of Nicholson) shows
frequency as a function of wave
number for some subset of the six
wave speeds that arise in the
two-fluid model.

Furthermore, unlike MHD, where the
state of the plasma is characterized
by one parameter (plasma β), in the
two-fluid model the state of the
plasma is characterized by three
parameters:

1 Plasma frequency (or particle
density),

2 Gyrofrequency (or magnetic field
strength), and

3 Plasma β (or temperature).
In the cold plasma approximation
(β = 0), the first two parameters are
sufficient, and it is possible to indicate
the topology of wave-normal surface
on a two-dimensional diagram called
a Clemmow-Mullaly-Allis (CMA)
diagram.
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Two-fluid instabilities

The two-fluid model simplifies the kinetic model only by assuming that the colli-
sion period is small and retains all other modeling parameters.

The two-fluid model gives a way to test when small scales that MHD neglects
(e.g. plasma period, gyroperiod, or Debye length, but not mean free path) are
needed.

In particular, the two-fluid model gives a way to test uniform background states
that do not maximize entropy. Specifically, the two-stream instability arises
due to relative drift between ions and electrons, as discussed in Nicholson Sec-
tion 7.13. This instability has been proposed as a source of anomalously high
resistivity in plasmas.
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Reconnection

There are some important macroscale instabilities that cannot be properly re-
solved with MHD or a two-fluid model. One of the most important is magnetic
reconnection. Fast magnetic reconnection triggers the most powerful and ex-
plosing space weather events in the solar system and is critical to the project
of space weather forecasting. Linearized models have played an important role
in understanding magnetic reconnection, but numerical simulation is proving
necessary to get a coherent picture.
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