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Modeling parameters

Physical constants that define an
ion-electron plasma:

1 e (charge of proton),
2 mi , me (ion and electron mass),
3 c (speed of light),
4 ε0 (vacuum permittivity).

Fundamental parameters that
characterize the state of a plasma:

1 n0 (typical particle density),
2 T0 (typical temperature),
3 B0 (typical magnetic field).

Derived quantities:

p0 := n0T0 (thermal pressure)

pB :=
B2

0
2µ0

(magnetic pressure)

ρs := n0ms (typical density).

Collision periods:

τsp: expected time for 90-degree
deflection of species s via p.

Collisionless time, velocity, and space scale parameters:

plasma frequencies: ω2
p,s :=

n0e2

ε0ms
,

gyrofrequencies: ωg,s :=
eB0

ms
,

thermal velocities: v2
t,s :=

2p0

ρs
,

Alfvén speeds: v2
A,s :=

2pB

ρs
=

B2
0

µ0msn0
,

Debye length: λD :=
vt,s

ωp,s
=

√
ε0T0

n0e2
,

gyroradii: rg,s :=
vt,s

ωg,s
=

msvt,s

eB0
,

skin depths: δs :=
vA,s

ωg,s
=

c
ωp,s

=

√
ms

µ0nse2
.

plasma β := p0
pB

=
( vt,s

vA,s

)2
=
( rg,s
δs

)2
.

non-MHD ratio: c
vA,s

=
rg,s
λD

=
ωp,s
ωg,s

.

Johnson (KU Leuven) Fluid models of plasma Nov 29, 2012 3 / 40



Plasma model hierarchy

1 Particle Maxwell: discrete particles: (xp(t),vp(t))y large number of particles (per “mesh cell”)

2 Kinetic Maxwell: particle density functions: fs(x,v)y fast collisions (τss → 0).

3 two-fluid Maxwell: one gas for each species: ρs(x), us(x), es(x)y fast light waves (c →∞), charge neutrality (λD → 0).

4 extended MHD: gas that conducts electricity: ρ(x), u(x), e(x), B(x);
J = µ−1

0 ∇× B, E = u× B + ηJ + · · · .ysmall gyroradius (rg → 0) and gyroperiod (ωg →∞).

5 Ideal MHD: a perfectly conducting gas: E = u× B.
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Fundamental model: particle-Maxwell (relativistic)

Maxwell’s equations:

∂t B +∇× E = 0,

∂t E− c2∇× B = −J/ε0,
∇ ·B = 0, ∇ ·E = σ/ε0.

Charge moments:

σ :=
∑

pSp(xp)qp,

J :=
∑

pSp(xp)qpvp,

Particle equations:

dt xp = vp,

dt (γpvp) = ap(xp, vp),

γ−2
p := 1− (vp/c)2.

Lorentz acceleration:

ap(x, v) =
qp
mp

(E(x) + v× B(x))

Changing SI to Gaussian units:
replace B with B/c.

choose ε−1
0 = 4π.

Problem: model based on particles is not a
computationally accessible standard of truth for
most applications.

Solution: replace particles with a particle density
function fs(t , x, γv) for each species s.
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2-species kinetic-Maxwell (relativistic)

Maxwell’s equations:

∂t B +∇× E = 0,

∂t E− c2∇× B = −J/ε0,
∇ ·B = 0, ∇ ·E = σ/ε0.

Charge moments:

σ :=
∑

s
qs
ms

∫
fs d(γv),

J :=
∑

s
qs
ms

∫
vfs d(γv).

Kinetic equations:

∂t fi +v ·∇xfi +ai ·∇(γv)fi = Ci

∂t fe+v ·∇xfe+ae ·∇(γv)fe= Ce

Lorentz acceleration:

ai =
qi
mi

(E + v× B) ,

ae = qe
me

(E + v× B) .

“Collision” operator

includes all microscale effects

conservation:
∫

m(Ci + Ce) γ−1d(γv) = 0,
where m = (1, γv, γ).

decomposed as:

Ci = C̃ii +
←→
Cie ,

Ce = C̃ee +
←→
Cei ,

where
∫

mC̃ss γ
−1d(γv) = 0.

“collisionless”:
←→
Csp ≈ 0.

BGK collision operator

C̃ss =
Ms − fs
τss

,

where the entropy-maximizing distribution M shares
physically conserved moments with f :

M = exp (α · m) ,∫
m(M− f )d(γv) = 0.
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2-species kinetic-Maxwell (classical)

Maxwell’s equations:

∂t B +∇× E = 0,

∂t E− c2∇× B = −J/ε0,
∇ ·B = 0, ∇ ·E = σ/ε0.

Charge moments:

σ :=
∑

s
qs
ms

∫
fs dv,

J :=
∑

s
qs
ms

∫
vfs dv.

Kinetic equations:

∂t fi +v ·∇xfi +ai ·∇vfi = Ci

∂t fe+v ·∇xfe+ae ·∇vfe= Ce

Lorentz acceleration:

ai =
qi
mi

(E + v× B) ,

ae = qe
me

(E + v× B) .

“Collision” operator

includes all microscale effects

conservation:
∫

v m(Ci + Ce) = 0,
where m = (1, v, ‖v‖2).

decomposed as:

Ci = C̃ii +
←→
Cie ,

Ce = C̃ee +
←→
Cei ,

where
∫

v mC̃ii = 0 =
∫

v mC̃ee.

“collisionless”:
←→
Csp ≈ 0.

BGK collision operator

C̃ss =
Ms − fs
τss

,

where the Maxwellian distribution M shares physically
conserved moments with f :

M =
ρ

(2πθ)3/2
exp

(
−|c|2

2θ

)
,

θ := 〈|c|2/2〉.

Johnson (KU Leuven) Fluid models of plasma Nov 29, 2012 7 / 40



2-fluid Maxwell

Maxwell’s equations:

∂t B +∇× E = 0,

∂t E− c2∇× B = −J/ε0,
∇ ·B = 0, ∇ ·E = σ/ε0.

Charge moments:

σ := σi + σe, σs := qs
ms
ρs.

J := Ji + Je, Js := σsus.

Evolved moments: ρs
ρsus
ρses

 :=

∫  1
v

1
2‖cs‖2

 fs dv

Evolution equations:

∂tρs +∇ · (usρs) = 0,

ρsd s
t us +∇ps +∇ ·P◦s = σsE + Js × B + Rs

ρsd s
t es + ps∇ ·us + P◦s :∇us +∇ ·qs = Qs

Closures (neglect):

Re

en
≈ η · J + βe ·qe,

Ri = −Re,

Qs =: Qex
s + Qfr

s ,

Qex
s ≈ 3

2 Ks n2(T0 − Ts),

Qfr := Qfr
i + Qfr

e

≈ η : JJ + βe :qeJ,

Qfr
i = Qfr

e me/mi,

P◦s ≈ −2µs :∇u◦s ,
qs ≈ −ks ·∇Ts.



Definitions:

d s
t := ∂t + us ·∇,

cs := v− us,

ns := ρs/ms,

X◦ :=
X + XT

2
−

I trX
3

.

Collisional sources:

Rs :=
∫

v
←→
Cs dv,

Qs :=
∫ 1

2‖cs‖2←→Cs dv.

Closing moments
(intraspecies):

Ps :=
∫

cscs fs dv,

ps := 1
3 trPs,

P◦s := Ps − psI,

qs :=
∫ 1

2 cs‖cs‖2 fs dv.
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2-fluid MHD (extended)

electromagnetism (∂t E ≈ 0)

∂t B +∇× E = 0, ∇ ·B = 0,

J = µ−1
0 ∇× B

Ohm’s law (evolution of J solved for E)

E = η · J + B× u + mi−me
eρ J× B

+ 1
eρ∇ · (me(piI + P◦i )−mi(peI + P◦e ))

+ mime
e2ρ

[
∂t J +∇·(uJ + Ju− mi−me

eρ JJ)
]

mass and momentum (total):

∂tρ+∇ · (uρ) = 0

ρdt u +∇ · (Pi + Pe + Pd) = J× B

energy evolution (per species):

ρidt ei + pi∇ ·ui + P◦i :∇ui +∇ ·qi = Qi,

ρedt ee + pe∇ ·ue + P◦e :∇ue +∇ ·qe = Qe;

Closures
(simplified):

Q := Qi + Qe

≈ η : JJ

Qs =
mred
ms

Q,

P◦s ≈ −2µs :∇u◦s ,
qs ≈ −ks ·∇Ts.

Definitions:

dt := ∂t + u ·∇,

w = J
en ,

wi =
mred
mi

w,

we =
−mred

me
w,

Pd := mrednww ≈ 0

m−1
red := m−1

e + m−1
i .
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Resistive MHD

MHD system:

∂tρ+∇ · (ρu) = 0 (mass continuity),

ρdt u +∇p +∇·P◦ = J× B (momentum balance),

∂tE+∇· (u(E+p) + u ·P◦+q) = J ·E (energy balance),

∂t B +∇× E = 0 (magnetic field evolution).

The divergence constraint ∇ ·B = 0 is maintained by exact
solutions and must be maintained in numerical solutions.

Electromagnetic closing relations:

J := µ−1
0 ∇× B (Ampere’s law for current),

E ≈ B× u + η · J (Ohm’s law for electric field).

Fluid closure:

P◦ ≈ −2µ :∇u◦,
q ≈ −k ·∇T .

Descriptions:

ρ = total mass density
ρu = total momentum density
u = velocity of bulk fluid
E = total gas-dynamic energy

density
p = total scalar pressure
P◦ = total deviatoric pressure
∇u◦ = deviatoric rate of “strain”

(deformation)
T = temperature
q = total heat flux
η = resistivity
µ = viscosity
k = heat conductivity
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Conservation law framework

Definitions:
t = time
X = position
U(t ,X) = conserved quantity
F(t ,X) = flux function (e.g. F(U)).
S(t ,X) = 0: production of U is zero.
Ω = arbitrary region
n̂ = outward unit vector
dA = n̂dA: surface element
dA ·F(t ,X) = flux rate of U out of surface element

Conservation law:

(∀Ω) dt

∫
Ω

U = −
∮
∂Ω

n̂ ·F

⇐⇒ (∀Ω)

∫
Ω

(∂tU +∇ ·F) = 0

⇐⇒ ∂tU +∇ ·F = 0 .
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Balance law framework

Definitions:
t = time
X = position
U(t ,X) = conserved quantity
F(t ,X) = flux function (e.g. F(U)).
S(t ,X) = production of U.
Ω = arbitrary region
n̂ = outward unit vector
dA = n̂dA: surface element
dA ·F(t ,X) = flux rate of U out of surface element

Balance law:

(∀Ω) dt

∫
Ω

U = −
∮
∂Ω

n̂ ·F +

∫
Ω

S

⇐⇒ (∀Ω)

∫
Ω

(∂tU +∇ ·F− S) = 0

⇐⇒ ∂tU +∇ ·F = S .
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Transport Derivatives

Given:
t = time

X = position

V(t ,X) = velocity field

α(t , x) = arbitrary function

ρ(t , x) = density convected by V
dt := d

dt

δtα := ∂tα+∇ · (Vα)

= “transport derivative” of α.

dtα := ∂tα+ V ·∇α
= material derivative of α.

Properties:

δtα = dtα+ α∇ ·V .

δt (αβ) = dt (αβ) + (∇ ·V)αβ
= (dtα)β + α(dtβ) + (∇ ·V)αβ
= (δtα)β + α(dtβ).

δt (ρβ) = ρdtβ .

Conservation of transported material:

ρ(t , x) is transported by V
⇐⇒ F := Vρ is a flux for ρ
⇐⇒ ∂tρ+∇ · (Vρ) = 0

⇐⇒ δtρ = 0
⇐⇒ dtρ+ ρ∇ ·V = 0
⇐⇒ dt ln ρ = −∇ ·V.

Incompressible flow:

V is incompressible
⇐⇒ dtρ = 0
⇐⇒ dt ln ρ = 0
⇐⇒ ∇ ·V = 0

⇐⇒ dtα = δtα (∀α).
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Reynolds Transport Theorem

Given: Ω(t) = region convected by V.

Recall: δtα := ∂tα+∇ · (Vα).

Reynolds transport theorem:

dt

∫
Ω(t)

α =

∫
Ω(t)

δtα (∀α(t , x)).

Convective conservation law:

dt

∫
Ω(t)

ρ = 0 (∀Ω(t) convected by V)

⇐⇒
∫

Ω(t)
δtρ = 0 (∀Ω(t) convected by V)

⇐⇒ δtρ = 0

⇐⇒ ∂tρ+∇ · (Vρ) = 0
Proof:

dt

∫
Ω(t)

α =

∫
Ω(t)

∂tα+

∮
∂Ω

n̂ · (Vα)

=

∫
Ω(t)

(∂tα+∇ · (Vα)) =

∫
Ω(t)

δtα;

the first equality can be justified by time splitting:

dt
∫

Ω(t) α = rate of change of amount of changing stuff in moving region Ω(t),∫
Ω ∂tα = rate of change of amount of changing stuff in frozen region Ω,∮
∂Ω(t) n̂ · (Vα) = rate of change of amount of frozen stuff in moving region Ω(t).
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Vlasov equation

Given:

x: position

v =
.
x: velocity

a =
.
v: acceleration

f̃s: number distribution of species s.

f̃s(t , x, v)dxdv: number of particles of
species s in a region of state space with
volume dxdv.

ms: particle mass of species s

qs: particle charge of species s

fs = ms f̃s: mass distribution of species s.

as = qs
ms

(E + v× B): Lorentz acceleration.

X := (x, v): position in state space.

V :=
.
X = (v, as): velocity in state space.

We suppress the species index s when focusing
on one species.

Theorem: Lorentz acceleration implies
incompressible flow in phase space.

Incompressible means ∇X ·V = 0.

∇X ·V = ∇x · v +∇v · a
∇x · v = 0 because x and v are
independent variables.

∇v ·E(t , x) = 0 for same reason.

So ∇v · a = q
m

∂
∂vi
εijk vj Bk (t , x) = 0.

Vlasov equation (conservation of particles):

f (t ,X) is transported by V
⇐⇒ ∂t f +∇X · (Vf ) = 0

⇐⇒ ∂t f +∇x · (vf ) +∇v · (af ) = 0

(conservation form)

⇐⇒ ∂t f + v ·∇xf + a ·∇v · f = 0

⇐⇒ ∂t f + V ·∇Xf = 0

Remark: conservation form is preferred for
taking fluid moments.
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Collision operator

Kinetic equation = Vlasov with collisions:

∂t fs +∇x · (vfs) +∇v · (asfs) = Cs

The collision operator Cs(t , x, v)
represents evolution of fs due to local
collisions.

Ci = C̃ii +
←→
Cie , where the intraspecies

collision operator C̃ii represents the
effect of ion-ion collisions and the
interspecies collision operator

←→
Cie

represents the effect on the ions of
ion-electron collisions.

Cs is an operator which maps functions
of velocity space, fi(v) and fe(v), to a
function of velocity space, Cs(v).

Cs is best understood in terms of time
splitting: alternate between evolving
the Vlasov equation and applying the
collision operator at each point in
space.

What constraints do collisions respect?
Conservation of mass:

∫
v Cs = 0.

Conservation of momentum:∫
v vC̃ii = 0.∫
v v(Ci + Ce) = 0,

Conservation of energy :∫
v ‖v‖

2C̃ii = 0.∫
v ‖v‖

2(Ci + Ce) = 0,

Physical entropy is nondecreasing:
−
∫

v C̃ii log f̃i ≥ 0.
−
∫

v m−1
i Ci log f̃i −

∫
v m−1

e Ce log f̃e ≥ 0.

Example: BGK collision operator:

C̃ss =
Ms − fs
τss

.

Ms: Maxwellian distribution. Has the greatest
possible physical entropy for a given mass,
momentum, and energy density.

τss = collision period: time scale on which
distribution relaxes to a Maxwellian distribution.
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Collision operator: why needed

Why do we need a collision operator?
To incorporate microscale effects, e.g.:

particle interactions mediated by a
microscale electric field (known as
“Coulomb collisions” ) and
microscale wave-particle interactions.

To justify fluid models:
Kinetic models agree with fluid
models in a limit where the collision
period approaches zero.

Why is a collision operator needed to incor-
porate microscale effects?

The Vlasov equation agrees exactly with a
particle model if f is understood to be a
sum of Dirac delta functions (one for each
particle). In this case, the Vlasov equation
is instead referred to as the “Klimontovich
equation”.
The fine-grain electromagnetic field detail
needed in such a model usually makes it

computationally intractible, which is the
whole reason for introducing a kinetic
model in the first place.

Choose a resolution scale ∆x large
enough so that by averaging over this
scale the distributions f and the
electromagnetic field can be decomposed
into a smoothly varying macroscopic part
f 0 plus a microscopic part f 1. By
definition, a kinetic equation evolves the
macroscopic part.

The Vlasov equation evolves the
macroscopic part independently of the
microscopic part.

The Kinetic equation uses a collision
operator to estimate the effect of the
microscopic part on the evolution of the
macroscopic part.
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Taking moments: from kinetic to fluid

Given definitions:

χ(v) =


1 zeroth moment
v first moment
v2 second moment

〈χ〉s :=

∫
vχfs∫
vfs

is the statistical

mean of χ for species s.

ρs :=
∫

v fs (mass density)

ρs〈χ〉s :=
∫

vχfs .

(generic moment)

us := 〈v〉s. (bulk velocity)

cs := v− us. (thermal velocity)

ns = 1
ms
ρs (number density)

σs = qs
ms
ρs (charge density)

ρsus (momentum)

. . . dropping subscript s. . .

Taking generic moment of the kinetic equation:∫
v
χ
(
∂t f +∇x · (vf ) +∇v · (af ) = C

)
⇐⇒ ∂t

∫
vχf +

∫
vχ∇x · (vf ) +

∫
vχ∇v · (af ) =

∫
vχC

⇐⇒ ∂t
∫

vχf +∇x · (
∫

vvχf ) =
∫

va · (∇vχ)f +
∫

vχC
⇐⇒ ∂t (ρ〈χ〉) +∇x · (ρ〈vχ〉) = ρ〈a ·∇vχ〉+

∫
vχC

⇐⇒ δt (ρ〈χ〉) +∇x · (ρ〈cχ〉) = ρ〈a ·∇vχ〉+
∫

vχC

Continuity equations:
mass (χ = 1):

∂tρ+∇ · (ρu) = 0

charge (χ = q
m ):

∂tσ +∇ · (σu) = 0

number density (χ = 1
m ):

∂t n +∇ · (nu) = 0
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Taking moments: momentum

Given definitions:
. . . dropping subscript s. . .

u := 〈v〉 (bulk velocity)

c := v− u (thermal velocity)

ρu (momentum)

J = σu (current)

R :=
∫

vcC (resistive drag)

P := ρ〈cc〉 (pressure tensor)

Relationships:
v = u + c, so

〈c〉 = 0
(since 〈c〉 = 〈v〉 − u = 0), so

〈vc〉 = 〈cc〉
(since 〈uc〉 = u〈c〉 = 0) and∫

vvC =
∫

vcC
(since

∫
vuC = u

∫
vC = 0).

Conservation of momentum (χ = v):
Recall generic moment of the kinetic equation:

δt (ρ〈χ〉) +∇x · (ρ〈cχ〉) = ρ〈a ·∇vχ〉+
∫

vχC

Using the relationships from the left column,

δt (ρu) +∇ ·P = ρ〈a〉+ R.

But 〈a〉 = q
m (E + u× B). Thus:

δt (ρu) +∇ ·P = σE + J× B + R . (1)

Kinetic energy balance = momentum balance dot u:

ρdt (
1
2‖u‖

2) + u · (∇ ·P) = J ·E + u ·R

Current balance = momentum balance times q
m :

m
q
δt J +∇ ·P = σE + J× B + R.
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Taking moments: energy

Given definitions:
. . . dropping subscript s. . .

E := ρ〈 1
2 v2〉 (energy density)

e := 〈 1
2‖c‖

2〉 (thermal energy per
mass)

P := ρ〈cc〉 (pressure tensor)

q := ρ〈 1
2 c‖c‖2〉 (heat flux)

Q :=
∫

v
1
2‖c‖

2C (collisional
heating)

Relationships:
energy = kinetic plus thermal:
〈‖v‖2〉 = 〈‖u‖2〉+ 〈‖c‖2〉, i.e.,
ρ〈 1

2‖v‖
2〉 = ρ〈 1

2‖u‖
2〉+ρ〈 1

2‖c‖
2〉.

Energy balance:
Recall generic moment evolution:

δt (ρ〈χ〉) +∇x · (ρ〈cχ〉) = ρ〈a ·∇vχ〉+
∫

vχC

energy: χ = 1
2 v · v: using that:

ρ〈 1
2 cv · v〉 = ρ〈cc〉 · u + ρ〈 1

2 cc · c〉 = P · u + q,
ρ〈a · v〉 = ρ〈 q

m E · v〉 = E · q
m ρu = E · J

(that is, 〈a · v〉 = 〈a〉 · 〈v〉),∫
v

1
2 v · vC =

∫
vu · vC +

∫
v

1
2 c · cC = R · u + Q

δtE +∇ · (P ·u + q) = J ·E + R ·u + Q

Thermal energy balance:
Recall kinetic energy balance:

δt (ρ
1
2‖u‖

2) + u · (∇ ·P) = J ·E + R ·u

Thermal energy balance equals energy balance
minus kinetic energy balance:

δt (ρ〈 1
2‖c‖

2〉) + P :∇u +∇ ·q = Q
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Conserved moment evolution

Full fluid equations (single fluid):
Restoring the species index s, we have a balance law
for the mass(1) + momentum(3) + energy(1) = 5 con-
served moments:

δs
tρs = 0

δs
t (ρsus) +∇ ·Ps = σsE + Js × B + Rs

δs
tEs +∇ · (Ps ·us + qs) = Js ·E + Rs ·us + Qs

(2)
MHD fluid equations:

The bulk fluid quantities
of MHD are defined by

ρ := ρi + ρe,

ρu := ρiui + ρeue,

E := Ei + Ee.

Summing each equation
in System (2) over ions
(s = i) and electrons

(s = e) gives the cor-
responding MHD equa-
tion. So the MHD sys-
tem is System (2) with
the subscript s erased; in
MHD, total charge σ is
assumed to equal zero.
The interspecies collision
terms involving Rs and
Qs cancel and disappear
(why?).

Remarks
System (2) is in the form

δt U +∇ · F̃ = S, i.e.,

∂t U +∇ · (uU + F̃) = S,

which is in the balance form

∂t U +∇ ·F = S.

In the MHD sum, we avoid
introducing higher-order nonlinear
terms by pretending that us = u
and δs

t = δt . In fact,

δi
t := ∂t + ui ·∇,

δe
t := ∂t + ue ·∇, and

δt := ∂t + u ·∇
are three (hopefully slightly)
different things, because
us = u + ws, where ws is the drift
velocity of species s relative to
the bulk velocity u.
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Conserved moment evolution (standard form)

The pressure tensor is usually separated out into its scalar part ps = 1
3 trPs

(which equals 2/3 the thermal energy) and its deviatoric (traceless) part P◦s :=
Ps − psI (which cannot in general be inferred from the evolved moments). So
more conventionally system (2) would be written:

∂tρs +∇ · (usρs) = 0
∂t (ρsus) +∇ · (ρsusus) +∇ps +∇ ·P◦s = σsE + Js × B + Rs

∂tEs +∇· ((Es + ps)us + P◦s ·us + qs) = Js ·E + Rs ·us + Qs

(3)

The system (3) agrees exactly with the kinetic equation. The only problem is
that it is not closed: the colored terms are unkown unless we make an as-
sumption about the particle distribution. Fluid closures are derived by assum-
ing that intraspecies collisions are fast enough to keep the distribution close to
Maxwellian. If the distribution is Maxwellian then the red quantities, deviatoric
pressure P◦s and heat flux qs, will be zero. If there are no interspecies colli-
sions between ions and electrons then the blue quantities, resistive drag Rs and
collisional heating Qs, will be zero.
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MHD: bulk conducting fluid

MHD models plasma as an
electrically conducting fluid.
The (eXtended) MHD model
simplifies the two-fluid model by
making two fundamental
approximations:

1 Quasineutrality: The net charge
of both species is zero.

2 The displacement current ∂tE is
zero.

These approximations assume that
the Debye length and plasma period
are small (relative to the scales of
interest). These are the smallest
scales relevant in plasma modeling.
MHD gives up on them.

Simplified versions of MHD result
from additional approximations.

Two-fluid MHD avoids additional
assumptions.
One-fluid MHD assumes that the
drift velocity of electrons relative
to ions is small.
Hall MHD assumes that the
electron gyroradius and
gyroperiod are small.
Ideal MHD assumes that all
plasma modeling parameters are
small, including ion gyroradius
and gyroperiod and ion collision
period.
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MHD: bulk fluid quantities

Bulk versus two-fluid quantities:
MHD evolves bulk quantities

ρ := ρi + ρe.
ρu := ρiui + ρeue.
E := Ei + Ee.

Heat flux:

qg := qi + qe.
Quasineutrality allows drift velocity
to be inferred from current
(because quasineutrality implies
that current is independent of
reference frame):

0 ≈ σ := σi + σe.
ws := us − u.
w := wi − we.
J = σiw = σew (because
current is independent of
reference frame)
0 = mewe + miwi. (by
conservation of mass and
charge neutrality)

MHD pressure. MHD has three kinds of pressure, due
to gas pressure, interspecies drift, and magnetic field:

1 Gas pressure:
pg := pi + pe is the summed gas-dynamic pressure.
Pg := Pi + Pe is the summed gas-dynamic pressure
tensor.

2 Interspecies drift:
m−1

red := m−1
i + m−1

e (reduced mass),
Pd := mrednww (“drift pressure tensor” ),
pd := 1

3 mredn|w|2 (“drift pressure” ),
p := pg + pd (MHD gas-dynamic pressure), and
P := Pg + Pd (MHD gas-dynamic pressure tensor )

are defined so that gas-dynamic energy satisfies

E = 3
2 p + 1

2ρ|u|
2.

(The drift pressure can be reliably neglected.)
3 pMHD = p + pB (total MHD pressure) includes the

magnetic pressure pB := |B|2
2µ0

, defined by its ability
to balance gas-dynamic pressure in steady-state
solutions.
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MHD gas dynamics (bulk fluid evolution)

Full fluid equations (one species):
Summing the equations in System (2) (see
page 24) over both species gives conserva-
tion laws for density of total mass, momen-
tum, and energy:

δtρ = 0,

δt (ρu) +∇ · (Pg + Pd) = J× B,

δtE +∇ · (Pg ·u + qg + qd) = J ·E.
(4)Pd and qd are trash bins for “bad”

(nonlinear) terms (see right column). MHD
throws them away.
If the trash is retained, this simplified
system agrees exactly with the two-fluid
equations.
Problem: even taking out the trash, this
system is not closed:

What is J?
What is σ?

Solution: modify Maxwell: (��HH∂t E, σ = 0). . .

Drift:

Define ws := us − u to be the drift
velocity of species s.

Pd :=
∑

s ρswsws is the “drift pressure”.

qd :=
∑

s (wsEs + ws ·Ps) is the “drift
heat flux”.

Throwing away Pd is safe1, because wi
and ρe are both relatively small.

Throwing away qd is dangerous because
we could be large and because electron
and ion pressure (or temperature or
thermal energy) are comparable.

When qd can be relatively large, retain
separate energy equations (e.g., use
“two-fluid” (two-temperature) MHD
instead).

1except for pair plasma
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MHD: Maxwell’s equations

MHD assumes that the light speed is infinite. This implies quasineu-
trality: that the net charge density is zero. Indeed, Maxwell’s equations
simplify to:

∂tB +∇× E = 0, ∇ ·B = 0,

µ0J = ∇× B−����XXXXc−2∂tE, µ0σ = 0 +���
��XXXXXc−2∇ ·E.

This system is Galilean-invariant, and its relationship to gas-dynamics is
fundamentally different:

variable MHD 2-fluid-Maxwell
J J = ∇× B/µ0 J = e(niui − neue)

(comes from B) (from gas dynamics)
σ σ = 0 (quasineutrality) σ = e(ni − ne)

(gas-dynamic constraint) (electric field constraint)
E supplied by Ohm’s law evolved

(from gas dynamics) (from B and J)
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MHD: quasineutrality

MHD assumes charge neutrality
(“quasineutrality”a): 0 = σi + σe.

Quasineutrality is valid on time scales
greater than the electron plasma period
and on spatial scales greater than a
Debye length.
Quasineutrality allows to infer the drift
velocities ws := us − u of two species
from their net mass, momentum, and
current densities.

Assume qi = e, qe = −e .
Then ne = ni := n0.
Formulas for drift velocities: b

wi =
me

mi + me
w ≈ 0, (5)

we =
−mi

mi + me
w ≈ −w, (6)

w =
J

en0
. (7)

Justification:
Formulas (5)–(6) are the solution to the lin-
ear system

0 =miwi+mewe (momentum),

w := wi −we (relative drift def.),

where the momentum relation holds be-
cause total momentum is zero in the ref-
erence frame of the fluid: 0 = min0wi +
men0we. Formula (7) holds by choosing to
measure the current alternately in the ref-
erence frame of the ions or electrons, be-
cause for a charge-neutral plasma current
is the same in any two reference frames:
J :=

∑
s (u + ws)σs = u

(∑
s σs

)
+∑

s wsσs =
∑

s wsσs.

a Classical MHD assumes exact charge neutrality. The word quasineutrality is preferred by physicists who can’t quite bring them-
selves to pretend that the speed of light is infinite.

b If |qi| 6= |qe| then make the replacements ms → |m̃s| :=
ms
|qs|

and en0 → σe
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MHD: Ohm’s law

Ohm’s law provides a closure for E by
solving electron momentum evolution
for the electric field.
Recall from page 22 the momentum
evolution equation (1). For electrons
it says:

δt (ρeue) +∇ ·Pe = σe(E + ue × B) + Re.

The resistive Ohm’s law assumes
equilibrium and therefore discards all
the differentiated quantities on the left
hand side and solves for E:

E = B× ue +
Re

σe
.

We assume that resistive drag is pro-
portional to current: Re

σe
= −η ·J. Re-

sistive MHD assumes that drift veloc-
ity is small: ue ≈ u. More generally,
from the previous slide we have that
ue = u + we ≈ u− J

en , so we get:

E =B× u (ideal term)

+ 1
en J× B (Hall term)

+ η ·J (resistive term),

where the Hall term comes from elec-
tron drift velocity and is inferred using
the quasineutrality relations (6)–(7) on
the previous slide: ue = u + we ≈
u + w = u− J

en0
.

Ideal MHD keeps only the ideal term.

Putting it all together, we have. . .
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Resistive MHD

MHD system:

∂tρ+∇ · (ρu) = 0 (mass continuity),

ρdtu +∇p +∇·P◦ = J× B (momentum balance),

δtE+∇·(up + u ·P◦+q) = J ·E (energy balance),

∂tB +∇× E = 0 (magnetic field evolution).

The divergence constraint ∇ ·B = 0 is maintained by exact
solutions and must be maintained in numerical solutions.

Electromagnetic closing relations:

J := µ−1
0 ∇× B (Ampere’s law for current)

E ≈ B× u + η ·J (Ohm’s law for electric field)

In a reference frame moving with the fluid, B remains un-
changed but the electric field becomes E′ = E + u×B =
η · J. So Ohm’s law says that in the reference frame of
the fluid, the electric field is proportional to current (i.e.
to the drift velocity of the electrons). In other words, the
electric field balances the resistive drag force.

Fluid closure:

P◦ ≈ −2µ :∇u◦,
q ≈ −k ·∇T .

Remarks:
We will neglect the viscosity µ and heat
conductivity k. In the presence of a
strong magnetic field, µ and k are ten-
sors, not scalars! In a tokamak (“fu-
sion doughnut”), heat conductivity per-
pendicular to the magnetic field can be
a million times weaker than parallel to
the magnetic field! (That’s a good thing,
since the whole point of a tokamak is to
confine heat.) The reason is that parti-
cles spiral tightly around magnetic field
lines; viewed on a large scale, they nat-
urally drift along field lines, but they can
be induced to move across field lines
only with great difficulty.

On the other hand, even when the mag-
netic field is strong, it is safe to assume
that the resistivity η is a scalar (i.e.,
η = ηI) and we will make this simpli-
fication.
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Conservation form of MHD

A fundamental
principle of physics is
that total momentum
and energy are
conserved. This
means that we
should be able to put
e.g. the momentum
evolution equation in
conservation form
∂t Q +∇ ·F = 0.

To put momentum evolution
in conservation form, we write
the source term as a
divergence using Ampere’s
law, vector calculus, and
∇ ·B = 0:

−µ0J× B = µ0B× J
= B×∇× B
= (∇B) ·B− B ·∇B

= ∇(B2/2)−∇ · (BB)

= ∇ · (IB2/2− BB).

To put energy evolution in conservation
form, we write the source term as a
time-derivative plus a divergence, using
Ampere’s law, the identity
∇ · (E× B) = B ·∇× E− E ·∇× B,
and Faraday’s law:

−µ0E · J
= −E ·∇× B
= ∇ · (E× B)− B ·∇× E
= ∇ · (E× B) + B · ∂t B

= ∇ · (E× B) + ∂t (B2/2).

So MHD in conservation form reads

∂tρ+∇ · (ρu) = 0 (mass continuity),

ρdt u +∇ ·
(
I
(
p + B2

2µ0

)
+ µ−1

0 BB + P◦
)

= 0, (momentum conservation),

∂t
(
E + B2

2µ0

)
+∇·

(
u(E+p) + u ·P◦ + q + µ−1

0 E× B
)

= 0, (energy conservation),

∂t B +∇× E = 0 (magnetic field evolution),

where we now recognize pB := B2

2µ0
as both the pressure and the energy of the magnetic field.
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Thermal energy evolution in MHD

To obtain a thermal energy evolution equation
for MHD, we imitate the procedure for gas
dynamics by subtracting kinetic energy evolution
from total gas dynamic energy evolution.

Recall momentum balance:

ρdtu +∇p +∇ ·P◦ = J× B.

Kinetic energy balance is u dot momentum
balance:

1
2ρdt |u|2 + u ·∇p + u · (∇ ·P◦) = u · (J× B).

Recall total gas-dyanamic energy balance:

δtE +∇ · (up + u ·P◦ + q) = J ·E.

Subtracting kinetic energy balance from this
yields thermal energy balance:

3
2δtp + p∇ ·u + P◦ :∇u +∇ ·q = J ·E′ ,

where E′ := E + u× B is
the electric field in the
reference frame of the fluid.
Here we have used the
ideal gas law

E = 3
2 p + 1

2ρ|u|
2,

which is presumed to hold
for MHD.

For ideal MHD,
0 = E′ = P◦ = q, and it is
common to write

dtp + γp∇ ·u = 0

where

γ := 5
3

is the adiabatic index.

Johnson (KU Leuven) Fluid models of plasma Nov 29, 2012 35 / 40



Net current evolution

Net current evolution is a weighted sum of the momentum equations for elec-
trons and for ions.

For each species, multiplying momentum evolution by the charge to mass
ratio yields current evolution:

∂tJs +∇·(usJs) +∇·
(

qs
ms
Ps

)
= qs

ms
(σsE + Js × B) + qs

ms
Rs.

Summing over both species and using charge neutrality gives net current
evolution:

∂t J +∇·
(

uJ + Ju−
mi−me

eρ
JJ
)

+ e∇·
( Pi

mi
−

Pe

me

)
=

e2ρ

mime

(
E+

(
u−

mi−me

eρ
J
)
× B−

Re

en

)
,

where we have assumed the quasineutrality relations σi = en and
σe = −en and ρ = n(mi + me), and where we have used that Ri = −Re.
For the inertial term we have used Js = usσs and∑

s usJs =
∑

s ususσs = Ju + uJ +
∑

s wswsσs, where
∑

s wswsσs = me−mi
me+mi

JJ
en

follows from the quasineutral drift velocity relations w = J
ne , wi = me

me+mi
w,

and we = −mi
me+mi

w.
Solving for electric field yields Ohm’s law. . .
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Full Ohm’s law

From the previous slide, net current evolution is

∂t J +∇·
(

uJ + Ju−
mi − me

eρ
JJ
)

+ e∇·
( Pi

mi
−

Pe

me

)
=

e2ρ

mime

(
E +

(
u−

mi − me

eρ
J
)
× B−

Re

en

)
A closure for the collisional term is Re

en = η ·J + βe ·qe.

Ohm’s law is current evolution solved for the electric field:

E =B× u (ideal term)

+ mi−me
eρ J× B (Hall term)

+ η ·J (resistive term)
+ βe ·qe (thermoelectric term)

+ 1
eρ∇ · (mePi −miPe) (pressure term)

+ mime
e2ρ

[
∂tJ +∇ ·

(
uJ + Ju− mi−me

eρ JJ
)]

(inertial term).

Ohm’s law gives an implicit closure to the induction equation, ∂tB +∇× E = 0
(so retaining the inertial term entails an implicit numerical method).
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Model justification

Why are fluid models good?

The mass, momentum, and energy moments are physically conserved.
Maxwell’s equations are defined in terms of fluid moments.
Therefore, if we can accurately evolve moments, we don’t need the detail
of the kinetic distribution.

When are simplified models good?
Kinetic models are good when the space-time box defined by the smallest
scale of interest contains enough particles.
Fluid models are good when the space-time box defined by the smallest
scale of interest is big enough that the particle distribution is close to
Maxwellian.
The MHD assumption of quasineutrality is good on scales larger than a
Debye length (so for any scale where a fluid model is relevant).
Ideal MHD is good if all plasma modeling scales (see slide 3, “Modeling
parameters”) are smaller than the smallest scale of interest.
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