Fluid models from multi-fluid to resistive MHD

Alec Johnson

Centre for mathematical Plasma Astrophysics
 Mathematics Department
 KU Leuven

Nov 28, 2013

Abstract: The fundamental plasma equations consist of Maxwell's equations for the electromagnetic field coupled to the kinetic equations for particle motion. The two-fluid model replaces the kinetic equations with fluid equations and is appropriate when intraspecies collisions are frequent enough to keep the distribution of particle velocities nearly symmetric. On time scales for which plasma oscillations are rapid, positive and negative charges must balance, and the plasma acts like a single, conducting fluid described by the equations of resistive magnetohydrodynamics (MHD).

Outline

© Vlasov: fluid in phase space
(2) Presentation of plasma models
© Derivation of plasma models
© MHD

Conservation law framework

Quantities:

- $t=$ time
- $X=$ position
- $U(t, \mathbf{X})=$ balanced quantity
- $\mathbf{F}(t, \mathbf{X})=$ flux function (e.g. $\mathbf{F}(U)$).
- $S(t, \mathbf{X})=0$ (no production of U).

Definitions:

- $\Omega=$ arbitrary region
- $\mathrm{d} \Omega$: volume element
- $\mathrm{d} t \mathrm{~d} \Omega S$: production in volume element
- $\widehat{\mathbf{n}}=$ outward unit vector
- $\mathrm{d} \mathbf{A}=\widehat{\mathbf{n}} \mathrm{d} A$: surface element
- $\mathrm{d} t \mathrm{~d} \mathbf{A} \cdot \mathbf{F}(t, \mathbf{X})=$ flux of U out of surface element. To see that flux is linear in $\mathrm{d} A$, consider that Ω can be approximated by a set of cells in a rectangular grid. dt $d A_{1} F_{1}$ gives flux across face perpendicular to first axis; $d A_{1}$ is area of projection of surface element onto first axis.

Note: $F=T$ in picture.

Balance law:

$$
\begin{aligned}
(\forall \Omega) & \int_{\Omega} U\left(t_{1}\right)-\int_{\Omega} U\left(t_{0}\right) \\
& =-\oint_{\partial \Omega} \mathrm{d} A \cdot \int_{t_{0}}^{t_{1}} \mathbf{F} \\
\Longleftrightarrow & (\forall \Omega) \quad d_{t} \int_{\Omega} U=-\oint_{\partial \Omega} \mathrm{d} A \cdot \mathbf{F} \\
\Longleftrightarrow & (\forall \Omega) \quad \int_{\Omega}\left(\partial_{t} U+\nabla \cdot \mathbf{F}\right)=0 \\
\Longleftrightarrow & \partial_{t} U+\nabla \cdot \mathbf{F}=0
\end{aligned}
$$

(n)

Balance law framework

Quantities:

- $t=$ time
- $X=$ position
- $U(t, \mathbf{X})=$ balanced quantity
- $\mathbf{F}(t, \mathbf{X})=$ flux function (e.g. $\mathbf{F}(U)$).
- $S(t, \mathbf{X})=$ production of U.

Definitions:

- $\Omega=$ arbitrary region
- $\mathrm{d} \Omega$: volume element
- $\mathrm{d} t \mathrm{~d} \Omega S$: production in volume element
- $\widehat{\mathbf{n}}=$ outward unit vector
- $\mathrm{d} \mathbf{A}=\widehat{\mathbf{n}} \mathrm{d} A$: surface element
- $\mathrm{d} t \mathrm{~d} \mathbf{A} \cdot \mathbf{F}(t, \mathbf{X})=$ flux of U out of surface element. To see that flux is linear in $\mathrm{d} A$, consider that Ω can be approximated by a set of cells in a rectangular grid. dt $d A_{1} F_{1}$ gives flux across face perpendicular to first axis; $d A_{1}$ is area of projection of surface element onto first axis.

Note: $F=T$ in picture.

Balance law:

$$
\begin{aligned}
(\forall \Omega) & \int_{\Omega} U\left(t_{1}\right)-\int_{\Omega} U\left(t_{0}\right) \\
& =-\oint_{\partial \Omega} \mathrm{d} \boldsymbol{A} \cdot \int_{t_{0}}^{t_{1}} \mathbf{F}+\int_{\Omega} \int_{t_{0}}^{t_{1}} S \\
\Longleftrightarrow & (\forall \Omega) \quad d_{t} \int_{\Omega} U=-\oint_{\partial \Omega} \mathrm{d} A \cdot \mathbf{F}+\int_{\Omega} S \\
\Longleftrightarrow & (\forall \Omega) \quad \int_{\Omega}\left(\partial_{t} U+\nabla \cdot \mathbf{F}-S\right)=0 \\
\Longleftrightarrow & \partial_{t} U+\nabla \cdot \mathbf{F}=S .
\end{aligned}
$$

Transport Derivatives

Given:

- $t=$ time
- $\mathbf{X}=$ position
- $\mathbf{V}(t, X)=$ velocity field
- $\alpha(t, \mathbf{x})=$ arbitrary function
- $\rho(t, \mathbf{x})=$ density convected by \mathbf{V}
- $\mathrm{d}_{t}:=\frac{\mathrm{d}}{\mathrm{d} t}$
- $\bar{\delta}_{t} \alpha:=\partial_{t} \alpha+\nabla \cdot(\mathbf{V} \alpha)$ $=$ "transport derivative" of α.
- $\mathrm{d}_{t} \alpha:=\partial_{t} \alpha+\mathbf{V} \cdot \nabla \alpha$ $=\underline{\text { material derivative }}$ of α.

Properties:

- $\bar{\delta}_{t} \alpha=\mathrm{d}_{t} \alpha+\alpha \nabla \cdot \mathbf{V}$.
- $\bar{\delta}_{t}(\alpha \beta)=\mathrm{d}_{t}(\alpha \beta)+(\nabla \cdot \mathbf{V}) \alpha \beta$ $=\left(\mathrm{d}_{t} \alpha\right) \beta+\alpha\left(\mathrm{d}_{t} \beta\right)+(\nabla \cdot \mathbf{V}) \alpha \beta$ $=\left(\bar{\delta}_{t} \alpha\right) \beta+\alpha\left(\mathrm{d}_{t} \beta\right)$.
- $\bar{\delta}_{t}(\rho \beta)=\rho \mathrm{d}_{t} \beta$.

$$
\begin{aligned}
& \Longleftrightarrow d_{t} \rho=0 \\
& \Longleftrightarrow d_{t} \ln \rho=0 \\
& \Longleftrightarrow \nabla \nabla \cdot \mathbf{V}=0 \\
& \Longleftrightarrow d_{t} \alpha=\bar{\delta}_{t} \alpha \quad(\forall \alpha)
\end{aligned}
$$

Conservation of transported material:

$\rho(t, \mathbf{x})$ is transported by \mathbf{V}
$\Longleftrightarrow \mathbf{F}:=\mathbf{V} \rho$ is a flux for ρ
$\Longleftrightarrow \partial_{t} \rho+\nabla \cdot(\mathbf{V} \rho)=0$
$\Longleftrightarrow \bar{\delta}_{t} \rho=0$
$\Longleftrightarrow d_{t} \rho+\rho \nabla \cdot \mathbf{V}=0$
$\Longleftrightarrow d_{t} \ln \rho=-\nabla \cdot \mathbf{V}$.
Incompressible flow:
\mathbf{V} is incompressible

Vlasov equation

Given:

- x: position
- $\mathbf{v}=\dot{\mathbf{x}}$: velocity
- $\mathbf{a}=\dot{\mathbf{v}}$: acceleration
- \tilde{f}_{s} : number distribution of species s .
- $\tilde{f}_{\mathrm{s}}(t, \mathbf{x}, \mathbf{v}) \mathrm{d} \mathbf{x} \mathrm{d} \mathbf{v}$: number of particles of species s in a region of state space with volume dxdv.
- m_{s} : particle mass of species s
- q_{s} : particle charge of species s
- $f_{\mathrm{s}}=m_{\mathrm{s}} \tilde{f}_{\mathrm{s}}$: mass distribution of species s .
- $\mathbf{a}_{\mathrm{s}}=\frac{q_{\mathrm{s}}}{m_{\mathrm{s}}}(\mathbf{E}+\mathbf{v} \times \mathbf{B})$: Lorentz acceleration.
- $\mathbf{X}:=(\mathbf{x}, \mathbf{v})$: position in state space.
- $\mathbf{V}:=\dot{\mathbf{X}}=\left(\mathbf{v}, \mathbf{a}_{\mathrm{s}}\right)$: velocity in state space.
- $(\mathbf{v} \times \mathbf{B})_{i}=\sum_{j} \sum_{k} \epsilon_{i j k} v_{j} B_{k}$ (cross product)
- $\epsilon_{i j k}$: Levi-Civita symbol

We suppress the species index s when focusing on one species.

Theorem: Lorentz acceleration implies incompressible flow in phase space.

- Incompressible means $\nabla_{\mathbf{x}} \cdot \mathbf{V}=0$.
- $\nabla_{\mathbf{X}} \cdot \mathbf{V}=\nabla_{\mathbf{x}} \cdot \mathbf{v}+\nabla_{\mathbf{v}} \cdot \mathbf{a}$
- $\nabla_{\mathbf{x}} \cdot \mathbf{v}=0$ because \mathbf{x} and \mathbf{v} are independent variables.
- $\nabla_{\mathbf{v}} \cdot \mathbf{E}(t, \mathbf{x})=0$ for same reason.
- So $\nabla_{\mathbf{v}} \cdot \mathbf{a}=\frac{q}{m} \frac{\partial}{\partial \mathbf{v}_{i}} \epsilon_{i j k} \mathbf{v}_{j} B_{k}(t, \mathbf{x})=0$.

Vlasov equation (conservation of particles):
$f(t, \mathbf{X})$ is transported by \mathbf{V}
$\Longleftrightarrow \partial_{t} f+\nabla_{\mathbf{x}} \cdot(\mathbf{V} f)=0$
$\Longleftrightarrow \frac{\partial_{t} f+\nabla_{\mathbf{x}} \cdot(\mathbf{v} f)+\nabla_{\mathbf{v}} \cdot(\mathbf{a} f)=0}{\text { (conservation form) }}$
$\Longleftrightarrow \partial_{t} f+\mathbf{v} \cdot \nabla_{\mathbf{x}} f+\mathbf{a} \cdot \nabla_{\mathbf{v}} \cdot f=0$
$\Longleftrightarrow \partial_{t} f+\mathbf{V} \cdot \nabla_{\mathbf{x}} f=\mathbf{0}$
Remark: conservation form is preferred for taking fluid moments.

Outline

© Vlasov: fluid in phase space

- Presentation of plasma models

© Derivation of plasma models

kinetic-Maxwell and the fluid limit

Kinetic-Maxwell:

particle equations:

$$
\begin{aligned}
& d_{t} \mathbf{x}_{p}=\mathbf{v}_{p} \\
& d_{t} \mathbf{v}_{p}=e \frac{q_{p}^{\#}}{m_{p}}\left(\mathbf{v}_{p} \times \mathbf{B}\left(\mathbf{x}_{p}\right)+\mathbf{E}\left(\mathbf{x}_{p}\right)\right)+\mathbf{r}
\end{aligned}
$$

electromagnetic field:

$$
\begin{aligned}
& \partial_{t} \mathbf{B}+\nabla \times \mathbf{E}=0, \\
& -c^{-2} \partial_{t} \mathbf{E}+\nabla \times \mathbf{B}=\mu_{0} \mathbf{J}, \\
& \nabla \cdot \mathbf{B}=0, \quad c^{-2} \nabla \cdot \mathbf{E}=\mu_{0} \sigma .
\end{aligned}
$$

charge-weighted moments:

$$
\begin{aligned}
\sigma(\mathbf{x}) & :=e \sum_{p} S_{p}\left(\mathbf{x}-\mathbf{x}_{p}\right) q_{p}^{\#} \\
\mathbf{J}(\mathbf{x}) & :=e \sum_{p} S_{p}\left(\mathbf{x}-\mathbf{x}_{p}\right) q_{p}^{\#} \mathbf{v}_{p}
\end{aligned}
$$

Plugging $\dot{\mathbf{v}}_{p}=\frac{q_{p}}{m_{p}}\left(\mathbf{v}_{p} \times \mathbf{B}+\mathbf{E}\right)$ into the time-derivative of mass $\left(\sum_{p} S_{p} m_{p}\right)$, momentum ($\sum_{p} \mathbf{v}_{p} S_{p} m_{p}$), and energy ($\sum_{p} \frac{1}{2} v_{p}^{2} S_{p} m_{p}$) density yields gas (i.e. fluid) equations.

Fluid approximation:

$$
\begin{array}{lr}
\partial_{t} \rho+\nabla \cdot(\rho \mathbf{u})=0 & \text { (mass), } \\
\rho \mathrm{d}_{t} \mathbf{u}+\nabla p+\nabla \cdot \mathbb{P}^{\circ}=\mathbf{J} \times \mathbf{B}+\sigma \mathbf{E}+\mathbf{R} \text { (momentum), } \\
d_{t} p+\gamma p \nabla \cdot \mathbf{u}+\mathbb{P}^{\circ}: \nabla \mathbf{u}+\nabla \cdot \mathbf{q}=0 & \text { (energy), }
\end{array}
$$

where we have used the definitions

$$
\begin{array}{lll}
\sigma:=\sum q S, & \mathbf{J}:=\sum \mathbf{v} q S, & p:=\frac{1}{3} \sum c^{2} m S, \\
\rho:=\sum m S, & \rho \mathbf{u}:=\sum \mathbf{v} m S, & \mathbb{P}:=\sum \mathbf{c} m S, \\
\mathbf{R}:=\sum \mathbf{r} m S, & \mathbf{c}:=\mathbf{v}-\mathbf{u}, & \mathbb{P}^{\circ}:=\mathbb{P}-p \mathbb{I},
\end{array}
$$

with the abbreviations

$$
\begin{aligned}
& m:=m_{p}, \quad S:=S_{p}\left(\mathbf{x}-\mathbf{x}_{p}\right), \\
& q:=e q_{p}^{\#}, \quad \sum:=\sum_{p},
\end{aligned}
$$

and the chain rule $\partial_{t} S=-\mathbf{v} \cdot \nabla S$.
Assuming that particle velocities for each species have a symmetric distribution implies $\mathbb{P}_{s}^{\circ}=0$ and $q_{s}=0$, giving Euler gas dynamics for each species, hence the ideal two-fluid Maxwell plasma model.

Modeling parameters

Physical constants that define an ion-electron plasma:
(1) e (charge of proton),
(2) m_{i}, m_{e} (ion and electron mass),
(3) c (speed of light),
(4) μ_{0} (vacuum permeability).

MHD parameters that characterize the state of a plasma:
(1) n_{0} (typical particle density),
(2) T_{0} (typical temperature),
(3) B_{0} (typical magnetic field).

Derived typical quantities:

- $p_{0}:=n_{0} T_{0}$ (thermal pressure)
- $p_{B}:=\frac{B_{0}^{2}}{2 \mu_{0}}$ (magnetic pressure)
- $\rho_{s}:=n_{0} m_{s}$ (mass density).

Collision periods:

- τ_{s} : period of relaxation of species s toward Maxwellian

Collisionless time, velocity, and space scale parameters:
plasma frequencies: $\quad \omega_{p, s}^{2}:=\frac{\mu_{0} n_{0}(c e)^{2}}{m_{s}}$,

$$
\text { gyrofrequencies: } \quad \omega_{g, s}:=\frac{e B_{0}}{m_{s}},
$$

thermal velocities: $\quad v_{t, s}^{2}:=\frac{2 p_{0}}{\rho_{s}}$,
Alfvén speeds: $\quad v_{A, s}^{2}:=\frac{2 p_{B}}{\rho_{s}}=\frac{B_{0}^{2}}{\mu_{0} m_{s} n_{0}}$,
Debye length: $\quad \lambda_{D}:=\frac{v_{t, s}}{\omega_{p, s}}=\sqrt{\frac{T_{0}}{n_{0} \mu_{0}(c e)^{2}}}$,
gyroradii: $\quad r_{g, s}:=\frac{v_{t, s}}{\omega_{g, s}}=\frac{m_{s} v_{t, s}}{e B_{0}}$,
skin depths: $\quad \delta_{s}:=\frac{v_{A, s}}{\omega_{g, s}}=\frac{c}{\omega_{p, s}}=\sqrt{\frac{m_{s}}{\mu_{0} n_{s} e^{2}}}$.
plasma $\beta:=\frac{p_{0}}{p_{B}}=\left(\frac{v_{t, s}}{v_{A, s}}\right)^{2}=\left(\frac{r_{g, s}}{\delta_{s}}\right)^{2}$.
non-MHD ratio: $\frac{c}{v_{A, s}}=\frac{r_{g, s}}{\lambda_{D}}=\frac{\omega_{p, s}}{\omega_{g, s}}$.

Plasma model hierarchy

- kinetic-Maxwell
fast collisions $\left(\tau_{s}{ }^{-1} \rightarrow \infty\right)$
(2) ideal two-fluid Maxwell: Euler gas for each species: $\rho_{\mathrm{s}}, \mathbf{u}_{\mathrm{s}}, p_{\mathrm{s}}$ fast oscillations ($e \rightarrow \infty$)
(0) relativistic ideal MHD: perfectly conducting gas fast light waves $(c \rightarrow \infty)$
(1) classical ideal MHD: perfectly conducting gas: $\mathbf{E}=\mathbf{B} \times \mathbf{u}$.

two-fluid Maxwell \rightarrow MHD

Two-fluid Maxwell:

gas evolution:

$$
\begin{aligned}
& \partial_{t} \rho_{\mathrm{s}}+\nabla \cdot\left(\rho_{\mathrm{s}} \mathbf{u}_{\mathrm{s}}\right)=0, \\
& \rho_{\mathrm{s}} \mathbf{d}_{t}^{5} \mathbf{u}_{\mathrm{s}}+\nabla p_{\mathrm{s}}=\mathbf{J}_{s} \times \mathbf{B}+\sigma_{\mathrm{s}} \mathbf{E}+\mathbf{R}_{\mathrm{s}}, \\
& d_{t}^{5} \boldsymbol{p}_{\mathrm{s}}+\gamma \boldsymbol{p}_{\mathrm{s}} \nabla \cdot \mathbf{u}_{\mathrm{s}}=\frac{2}{3} \frac{m_{\mathrm{red}}}{m_{\mathrm{s}}} Q
\end{aligned}
$$

electromagnetic field:

$$
\begin{aligned}
& \partial_{t} \mathbf{B}+\nabla \times \mathbf{E}=0 \\
& -c^{-2} \partial_{t} \mathbf{E}+\nabla \times \mathbf{B}=\mu_{0} \mathbf{J} \\
& \nabla \cdot \mathbf{B}=0, \quad c^{-2} \nabla \cdot \mathbf{E}=\mu_{0} \sigma, \\
& \mathbf{J}:=\mathbf{J}_{\mathrm{i}}+\mathbf{J}_{\mathrm{e}}, \quad \mathbf{J}_{\mathrm{s}}:=\sigma_{\mathrm{s}} \mathbf{u}_{\mathrm{s}} \\
& \sigma:=\sigma_{\mathrm{i}}+\sigma_{\mathrm{e}}, \quad \sigma_{\mathrm{s}}:= \pm \frac{e}{m_{\mathrm{s}}} \rho_{\mathrm{s}} .
\end{aligned}
$$

closure:

$$
\begin{aligned}
-\mathbf{R}_{\mathrm{i}} & =\mathbf{R}_{\mathrm{e}}=e^{2} n_{\mathrm{e}} n_{\mathrm{i}} \boldsymbol{\eta} \cdot\left(\mathbf{u}_{\mathrm{i}}-\mathbf{u}_{\mathrm{e}}\right) \\
& \approx e n \eta \cdot \mathbf{J} \\
Q & =-\sum_{\mathrm{s}} \mathbf{R}_{\mathrm{s}} \cdot \mathbf{u}_{\mathrm{s}} \approx \mathbf{J} \cdot \boldsymbol{\eta} \cdot \mathbf{J}
\end{aligned}
$$

Quasi-relativistic MHD $(e \rightarrow \infty)$:

gas evolution:

$$
\begin{array}{lr}
\partial_{t} \rho+\nabla \cdot(\rho \mathbf{u})=0 & \text { (mass) }, \\
\rho \mathrm{d}_{t} \mathbf{u}+\nabla p=\mathbf{J} \times \mathbf{B}+\sigma \mathbf{E} & \text { (momentum) }, \\
d_{t} p+\gamma p \nabla \cdot \mathbf{u}=\frac{2}{3} \mathbf{J} \cdot \eta \cdot \mathbf{J} & \text { (thermal energy). }
\end{array}
$$

magnetic field:

$$
\begin{array}{lr}
\partial_{t} \mathbf{B}+\nabla \times \mathbf{E}=0 & \text { (magnetic field), } \\
\mathbf{E}=\mathbf{B} \times \mathbf{u}+\eta \cdot \mathbf{J} & \text { (Ohm's law) }, \\
\nabla \cdot \mathbf{B}=0 & \text { (divergence constraint), } \\
\mu_{0} \mathbf{J}:=\nabla \times \mathbf{B}-c^{-2} \partial_{t} \mathbf{E} \text { (Ampere's law for current), } \\
\mu_{0} \sigma:=c^{-2} \nabla \cdot \mathbf{E} & \text { (quasineutrality) } .
\end{array}
$$

definitions:

$$
\begin{aligned}
d_{t}^{\mathrm{s}} & :=\partial_{t}+\mathbf{u}_{s} \cdot \nabla, & \gamma & :=\frac{5}{3}, \\
d_{t} & :=\partial_{t}+\mathbf{u} \cdot \nabla, & m_{\mathrm{red}}^{-1} & :=\sum_{\mathrm{s}} m_{\mathrm{s}}^{-1} .
\end{aligned}
$$

two-fluid Maxwell \rightarrow MHD

Two-fluid Maxwell:

gas evolution:

$$
\begin{aligned}
& \partial_{t} \rho_{\mathrm{s}}+\nabla \cdot\left(\rho_{\mathrm{s}} \mathbf{u}_{\mathrm{s}}\right)=0, \\
& \rho_{\mathrm{s}}^{5} \mathbf{d}_{\mathrm{t}}^{\mathbf{u}} \mathbf{u}_{\mathrm{s}}+\nabla p_{\mathrm{s}}=\mathbf{J}_{s} \times \mathbf{B}+\sigma_{\mathrm{s}} \mathbf{E}+\mathbf{R}_{\mathrm{s}}, \\
& d_{t} p_{\mathrm{s}}+\gamma p_{\mathrm{s}} \nabla \cdot \mathbf{u}_{\mathrm{s}}=\frac{2}{3} \frac{m_{\text {ered }}}{m_{\mathrm{s}}} Q
\end{aligned}
$$

electromagnetic field:

$$
\begin{aligned}
& \partial_{t} \mathbf{B}+\nabla \times \mathbf{E}=0, \\
& -c^{-2} \partial_{t} \mathbf{E}+\nabla \times \mathbf{B}=\mu_{0} \mathbf{J}, \\
& \nabla \cdot \mathbf{B}=0, \quad c^{-2} \nabla \cdot \mathbf{E}=\mu_{0} \sigma, \\
& \mathbf{J}:=\mathbf{J}_{\mathrm{i}}+\mathbf{J}_{\mathrm{e}}, \quad \mathbf{J}_{\mathrm{s}}:=\sigma_{\mathrm{s}} \mathbf{u}_{\mathrm{s}}, \\
& \sigma:=\sigma_{\mathrm{i}}+\sigma_{\mathrm{e}}, \quad \sigma_{\mathrm{s}}:= \pm \frac{e}{m_{\mathrm{s}}} \rho_{\mathrm{s}} .
\end{aligned}
$$

closure:

$$
\begin{aligned}
-\mathbf{R}_{\mathrm{i}} & =\mathbf{R}_{\mathrm{e}}=e^{2} n_{\mathrm{e}} n_{\mathrm{i}} \boldsymbol{\eta} \cdot\left(\mathbf{u}_{\mathrm{i}}-\mathbf{u}_{\mathrm{e}}\right) \\
& \approx e n \eta \cdot \mathbf{J} \\
Q & =-\sum_{\mathrm{s}} \mathbf{R}_{\mathrm{s}} \cdot \mathbf{u}_{\mathrm{s}} \approx \mathbf{J} \cdot \boldsymbol{\eta} \cdot \mathbf{J}
\end{aligned}
$$

Classical MHD $(e \rightarrow \infty, c \rightarrow \infty)$:

gas evolution:

$$
\begin{array}{lr}
\partial_{t} \rho+\nabla \cdot(\rho \mathbf{u})=0 & \text { (mass) }, \\
\rho \mathrm{d}_{t} \mathbf{u}+\nabla p=\mathbf{J} \times \mathbf{B} & \text { (momentum) }, \\
d_{t} p+\gamma p \nabla \cdot \mathbf{u}=\frac{2}{3} \mathbf{J} \cdot \boldsymbol{\eta} \cdot \mathbf{J} & \text { (thermal energy). }
\end{array}
$$

magnetic field:

$$
\begin{array}{lr}
\partial_{t} \mathbf{B}+\nabla \times \mathbf{E}=0 & \text { (magnetic field) }, \\
\mathbf{E}=\mathbf{B} \times \mathbf{u}+\eta \cdot \mathbf{J} & \text { (Onm's law), } \\
\nabla \cdot \mathbf{B}=0 & \text { (divergence constraint), } \\
\mu_{0} \mathbf{J}:=\nabla \times \mathbf{B} & \text { (Ampere's law for current), } \\
\mu_{0} \sigma:=0 & \text { (neutrality). }
\end{array}
$$

definitions:

$$
\begin{aligned}
d_{t}^{\mathrm{s}} & :=\partial_{t}+\mathbf{u}_{s} \cdot \nabla, & \gamma & :=\frac{5}{3}, \\
d_{t} & :=\partial_{t}+\mathbf{u} \cdot \nabla, & m_{\mathrm{red}}^{-1} & :=\sum_{\mathrm{s}} m_{\mathrm{s}}^{-1} .
\end{aligned}
$$

Outline

© Vlasov: fluid in phase space

(2) Presentation of plasma models

- Derivation of plasma models
- MHD

kinetic-Maxwell (the "truth")

particle evolution:

$$
\begin{aligned}
& d_{t} \mathbf{x}_{p}=\mathbf{v}_{p} \\
& d_{t} \mathbf{v}_{p}=\mathbf{a}_{\mathrm{p}}\left(\mathbf{x}_{p}, \mathbf{v}_{p}\right) \\
& \mathbf{a}_{\mathrm{p}}=\frac{q_{\mathrm{p}}}{m_{\mathrm{p}}}\left(\mathbf{v}_{\mathrm{p}} \times \mathbf{B}\left(\mathbf{x}_{\mathrm{p}}\right)+\mathbf{E}\left(\mathbf{x}_{\mathrm{p}}\right)\right)+\mathbf{r}_{\mathrm{p}} .
\end{aligned}
$$

electromagnetic field:

$$
\begin{aligned}
& \partial_{t} \mathbf{B}+\nabla \times \mathbf{E}=0, \\
& -c^{-2} \partial_{t} \mathbf{E}+\nabla \times \mathbf{B}=\mu_{0} \mathbf{J}, \\
& \nabla \cdot \mathbf{B}=0, \quad c^{-2} \nabla \cdot \mathbf{E}=\mu_{0} \sigma .
\end{aligned}
$$

charge-weighted moments:

$$
\begin{aligned}
\sigma(\mathbf{x}) & :=\sum_{p} S_{p}(\mathbf{x}) \mathbf{q}_{p} \\
\mathbf{J}(\mathbf{x}) & :=\sum_{p} S_{p}(\mathbf{x}) \mathbf{q}_{p} \mathbf{v}_{p}
\end{aligned}
$$

here $S_{p}(\mathbf{x})=S\left(\mathbf{x}-\mathbf{x}_{\mathrm{p}}\right)$ is the shape function of particle $p, \mathbf{x}_{\mathrm{p}}$ is its position, \mathbf{v}_{p} is its velocity, \mathbf{r}_{p} is collisional drag, \mathbf{E} is electric field, \mathbf{B} is magnetic field, \mathbf{J} is current, and σ is charge density.

Collisional drag.

The term \mathbf{r}_{p} can be used to incorporate gravitational acceleration, but in this context we introduce \mathbf{r}_{p} to account for microscale interactions not accounted for by macroscale smoothed versions of the electromagnetic field.

Collisional drag must conserve momentum and energy:

$$
\begin{array}{lr}
\sum \mathbf{r}_{\mathrm{p}} m_{\mathrm{p}} S_{\mathrm{p}}=0 & \text { (momentum) } \tag{1}\\
\sum \mathbf{r}_{\mathrm{p}} \cdot \mathbf{v}_{\mathrm{p}} m_{\mathrm{p}} S_{\mathrm{p}}=0 & \text { (energy) }
\end{array}
$$

Collision operator [aside].

For each species s, specifying \mathbf{r} is equivalent to specifying a collision operator \mathcal{C}. Indeed, requiring the collisional Vlasov equation

$$
\partial_{t} f+\nabla \cdot(\mathbf{v} f)+\nabla_{\mathbf{v}} \cdot(\mathbf{a} f)=\mathcal{C}
$$

to agree with the "drag force" Vlasov equation

$$
\partial_{t} f+\nabla \cdot(\mathbf{v} f)+\nabla_{\mathbf{v}} \cdot((\mathbf{a}+\mathbf{r}) f)=0
$$

reveals that

$$
-\nabla_{\mathbf{v}} \cdot(\mathbf{r} f)=\mathcal{C}
$$

must hold; to solve, set $\mathbf{r} f=\nabla \phi$, where $-\nabla_{\mathbf{v}}^{2} \phi=\mathcal{C}$.

kinetic-Maxwell and moments

particle evolution:

$$
\begin{align*}
& d_{t} \mathbf{x}_{p}=\mathbf{v}_{p} \\
& d_{t} \mathbf{v}_{p}=\mathbf{a}_{\mathrm{p}}\left(\mathbf{x}_{p}, \mathbf{v}_{p}\right) \\
& \mathbf{a}_{\mathrm{p}}=\frac{q_{\mathrm{p}}}{m_{\mathrm{p}}}\left(\mathbf{v}_{\mathrm{p}} \times \mathbf{B}\left(\mathbf{x}_{\mathrm{p}}\right)+\mathbf{E}\left(\mathbf{x}_{\mathrm{p}}\right)\right)+\mathbf{r}_{\mathrm{p}} . \tag{2}
\end{align*}
$$

electromagnetic field:

$$
\begin{aligned}
& \partial_{t} \mathbf{B}+\nabla \times \mathbf{E}=0, \\
& -c^{-2} \partial_{t} \mathbf{E}+\nabla \times \mathbf{B}=\mu_{0} \mathbf{J}, \\
& \nabla \cdot \mathbf{B}=0, \quad c^{-2} \nabla \cdot \mathbf{E}=\mu_{0} \sigma .
\end{aligned}
$$

charge-weighted moments:

$$
\begin{aligned}
& \sigma(\mathbf{x}):=\sum_{p} S_{p}(\mathbf{x}) \mathbf{q}_{p} \\
& \mathbf{J}(\mathbf{x}):=\sum_{p} S_{p}(\mathbf{x}) \mathbf{q}_{p} \mathbf{v}_{p}
\end{aligned}
$$

here $S_{p}(\mathbf{x})=S\left(\mathbf{x}-\mathbf{x}_{\mathrm{p}}\right)$ is the shape function of particle $\mathrm{p}, \mathbf{x}_{\mathrm{p}}$ is its position, \mathbf{v}_{p} is its velocity, \mathbf{r}_{p} is collisional drag, \mathbf{E} is electric field, \mathbf{B} is magnetic field, \mathbf{J} is current, and σ is charge density.

Fluid models evolve mass-weighted moments:

$$
\begin{array}{rlr}
\rho(\mathbf{x}) & :=\sum_{\mathrm{p}} m_{\mathrm{p}} S_{\mathrm{p}}(\mathbf{x}) & \text { (mass) }, \\
\mathbf{M}(\mathbf{x}) & :=\sum_{\mathrm{p}} \mathbf{v}_{\mathrm{p}} m_{\mathrm{p}} S_{\mathrm{p}}(\mathbf{x}) & \text { (momentum) }, \\
\mathcal{E}(\mathbf{x}) & :=\sum_{\mathrm{p}} \frac{1}{2}\left|\mathbf{v}_{\mathrm{p}}\right|^{2} m_{\mathrm{p}} S_{\mathrm{p}}(\mathbf{x}) & \text { (energy) },
\end{array}
$$

To abbreviate we drop the particle summation index p and the independent variable \mathbf{x} and write

$$
\begin{array}{rlr}
\sigma & :=\sum q S & \text { (charge) }, \\
\rho & :=\sum m S & \text { (mass) }, \\
\mathbf{J} & :=\sum \mathbf{v} q S & \text { (current) }, \\
\mathbf{M} & :=\sum \mathbf{v} m S & \text { (momentum) }, \\
\mathcal{E} & :=\sum \frac{1}{2}|v|^{2} m S & \text { (energy). }
\end{array}
$$

To get fluid equations, differentiate and use:

- $\dot{\mathbf{v}}=\frac{q}{m}(\mathbf{E}+\mathbf{v} \times \mathbf{B})+\mathbf{r}$
- $\partial_{t} S\left(\mathbf{x}-\mathbf{x}_{\mathrm{p}}(t)\right)=-\dot{\mathbf{v}}_{\mathrm{p}} \cdot \nabla S\left(\mathbf{x}-\mathbf{x}_{\mathrm{p}}\right)$, i.e.,

$$
\partial_{t} S=-\mathbf{v} \cdot \nabla S
$$

Moment evolution: from kinetic to fluid

Given definitions:

- $\chi(\mathbf{v})= \begin{cases}1 & \text { zeroth moment } \\ \mathbf{v} & \text { first moment } \\ \mathbf{v}^{2} & \text { second moment }\end{cases}$
- $\langle\chi\rangle:=\frac{\sum \chi m s}{\sum m s}$ (statistical mean of χ).
- $\rho:=\sum m S$ (mass density)
- $\rho\langle\chi\rangle:=\sum \chi m s$
- $\mathbf{u}:=\langle\mathbf{v}\rangle$ (fluid velocity)
- $\mathbf{c}:=\mathbf{v}-\mathbf{u}$ (thermal velocity)
- $\bar{\delta}_{t} \alpha:=\partial_{t} \alpha+\nabla \cdot(\mathbf{u} \alpha)$ ("transport derivative").
- $d_{t} \alpha:=\partial_{t} \alpha+\mathbf{u} \cdot \nabla \alpha$. (advective derivative).
- $\mathbf{M}=\rho \mathbf{u}$ (momentum).
- subscript s restricts sums to particles of species s.
- $n_{\mathrm{s}}=\sum_{\mathrm{p} \in \mathrm{s}} S_{\mathrm{p}}=\frac{1}{m_{\mathrm{s}}} \rho_{\mathrm{s}}$ (number density)

Generic mass moment evolution:

$$
\begin{align*}
& \partial_{t} \sum \chi m S=\sum \chi m \partial_{t} S+\sum \dot{\chi} m S \\
& \Longleftrightarrow \partial_{t}(\rho\langle\chi\rangle)+\sum \chi \mathbf{v} \cdot m \nabla S=\sum \dot{\chi} m S \\
& \Longleftrightarrow \partial_{t}(\rho\langle\chi\rangle)+\nabla \cdot \sum \mathbf{v} \chi m S=\sum \dot{\mathbf{v}} \cdot \nabla_{\mathbf{v}} \chi m S \\
& \Longleftrightarrow \partial_{t}(\rho\langle\chi\rangle)+\nabla \cdot(\rho\langle\mathbf{v} \chi\rangle)=\rho\left\langle\mathbf{v} \cdot \nabla_{\mathbf{v}} \chi\right\rangle \\
& \Longleftrightarrow \bar{\delta}_{t}(\rho\langle\chi\rangle)+\nabla \cdot(\rho\langle\mathbf{c} \chi\rangle)=\rho\left\langle\mathbf{a} \cdot \nabla_{\mathbf{v}} \chi\right\rangle \tag{3}
\end{align*}
$$

in the last step we have used that
$\langle\mathbf{v} \chi\rangle=\langle(\mathbf{u}+\mathbf{c}) \chi\rangle=\mathbf{u}\langle\chi\rangle+\langle\mathbf{c} \chi\rangle$ and $\bar{\delta}_{t}(\rho\langle\chi\rangle)=\partial_{t}(\rho\langle\chi\rangle)+\nabla \cdot(\mathbf{u}\langle\chi\rangle)$.

Mass continuity. $(\chi=1)$.
If $\chi=1$, then $\langle\mathbf{c} \chi\rangle=\langle\mathbf{c}\rangle=0$ and $\nabla_{\mathbf{v}} \chi=0$, so we simply get $\bar{\delta}_{t} \rho=0$, that is,

$$
\partial_{t} \rho+\nabla \cdot(\mathbf{u} \rho)=0
$$

Exercise: Using mass continuity, show that $\bar{\delta}_{t}(\rho\langle\chi\rangle)=\rho d_{t}\langle\chi\rangle$.

Continuity equations

Charge continuity.

Differentiating the definition of charge
density gives $\partial_{t} \sigma=\partial_{t} \sum q S=$
$-\sum \mathbf{v} \cdot q \nabla S=-\nabla \cdot \sum \mathbf{v} q S$, i.e., the flux of charge is the current:

$$
\partial_{t} \sigma+\nabla \cdot \mathbf{J}=0
$$

Mass continuity (again).

Replacing q with m in charge density evolution shows that mass flux coincides with the (classical) definition of momentum:

$$
\begin{equation*}
\partial_{t} \rho+\nabla \cdot(\mathbf{u} \rho)=0, \tag{4}
\end{equation*}
$$

that is (restricting to species s), $\partial_{t} \rho_{\mathrm{s}}+\nabla \cdot\left(\mathbf{u}_{\mathrm{s}} \rho_{\mathrm{s}}\right)=0$; dividing by m_{s} gives continuity of number density $n_{\mathrm{s}}=\rho_{\mathrm{s}} / m_{\mathrm{s}}$ for species s:

$$
\partial_{t} n_{\mathrm{s}}+\nabla \cdot\left(\mathbf{u}_{\mathrm{s}} n_{\mathrm{s}}\right)=0 \text {. }
$$

Vlasov equation [aside].

The Vlasov equation is simply the continuity equation in six-dimensional phase-space. To see this:

- Use $\mathbf{X}=(\mathbf{x}, \mathbf{v})$ to denote a point in phase space.
- Use $\mathbf{V}=\dot{\mathbf{X}}=(\mathbf{v}, \mathbf{a})$ to denote velocity in phase space.
- Write the particle distribution function (for a species of particles) as the sum of particle shape functions: $f=\sum_{\mathrm{p}} \mathcal{S}_{\mathrm{p}}$.
- Observe that $\mathbf{V}(\mathbf{X})$, i.e. the fluid is "cold."
- Assume that the shape of a particle in phase space is a delta function (unit spike): $\mathcal{S}_{\mathrm{p}}(\mathbf{X})=\delta\left(\mathbf{X}-\mathbf{X}_{\mathrm{p}}\right)$.

Then the continuity equation $\partial_{t} n_{\mathrm{s}}+\nabla \cdot\left(\mathbf{u}_{\mathrm{s}} n_{\mathrm{s}}\right)=0$ becomes the Vlasov equation $\partial_{t} f_{\mathrm{s}}+\nabla_{\mathbf{X}} \cdot\left(\mathbf{V}_{\mathrm{s}} f_{\mathrm{s}}\right)=0$, i.e.,

$$
\partial_{t} f+\nabla_{\mathbf{x}} \cdot(\mathbf{v} f)+\nabla_{\mathbf{v}} \cdot(\mathbf{a} f)
$$

In gory detail:

$$
\begin{aligned}
& -\partial_{t} f=-\sum_{\mathrm{p}} \partial_{t} \mathcal{S}_{\mathrm{p}} \\
& =\sum_{\mathrm{p}} \mathbf{V}_{\mathrm{p}} \cdot \nabla_{\mathbf{X}} \mathcal{S}_{\mathrm{p}} \\
& =\nabla_{\mathbf{X}} \cdot \sum_{\mathrm{p}} \mathbf{V}_{\mathrm{p}} \mathcal{S}_{\mathrm{p}} \\
& =\nabla_{\mathbf{x}} \cdot \sum_{\mathrm{p}} \mathbf{V}\left(\mathbf{X}_{\mathrm{p}}\right) \delta\left(\mathbf{X}-\mathbf{X}_{p}\right) \\
& =\nabla_{\mathbf{X}} \cdot \sum_{\mathrm{p}} \mathbf{V}(\mathbf{X}) \delta\left(\mathbf{X}-\mathbf{X}_{p}\right) \\
& =\nabla_{\mathbf{x}} \cdot\left(\mathbf{V}(\mathbf{X}) \sum_{\mathrm{p}} \delta\left(\mathbf{X}-\mathbf{X}_{p}\right)\right) \\
& =\nabla_{\mathbf{X}} \cdot(\mathbf{V}(\mathbf{X}) f) \\
& =\nabla_{\mathbf{x}} \cdot(\mathbf{v} f)+\nabla_{\mathbf{v}} \cdot(\mathbf{a} f) \\
& =\mathbf{v} \cdot \nabla_{\mathbf{x}} f+\mathbf{a} \cdot \nabla_{\mathbf{v}} f,
\end{aligned}
$$

where the last step follows from the incompressibility condition $\nabla_{\mathbf{v}} \cdot \mathbf{a}=0$.

Taking moments: momentum density evolution

Given definitions:

- $\mathbf{u}:=\langle\mathbf{v}\rangle$ (bulk velocity)
- $\mathbf{c}:=\mathbf{v}-\mathbf{u}$ (thermal velocity)
- $\mathbf{M}:=\rho \mathbf{u}$ (momentum)
- $\mathbf{R}:=\sum \mathbf{r} m S$ (collisional drag)
- $\mathbb{P}:=\rho\langle\mathbf{c c}\rangle$ (pressure tensor)
- $\left.p:=\left.\frac{1}{3} \rho\langle | \mathbf{c}\right|^{2}\right\rangle$ (pressure)
- $\mathbb{P}^{\circ}:=\mathbb{P}-p \mathbb{I}$
(deviatoric pressure)
- $\bar{\delta}_{t}^{\mathrm{s}} \alpha:=\partial_{t} \alpha+\nabla \cdot\left(\mathbf{u}_{\mathrm{s}} \alpha\right)$
("transport derivative" for \mathbf{u}_{s}).

Remarks:

- If restricting to species s, then denote quantities as $\mathbf{u}_{\mathrm{s}}, \mathbf{R}_{\mathrm{s}}$, etc.
- Including all particles, the drag force cancels: $\mathbf{R}=\sum_{\mathrm{s}} \mathbf{R}_{\mathrm{s}}=0$.
- $\mathbb{P}^{\circ}=0$ if the distribution of particle velocities is isotropic (the same in all directions).

Momentum balance ($\chi=\mathbf{v}$):

- Recall generic moment evolution (Eqn. (3)):

$$
\bar{\delta}_{t}(\langle\rho \chi\rangle)+\nabla_{\mathbf{x}} \cdot(\rho\langle\mathbf{c} \chi\rangle)=\rho\left\langle\mathbf{a} \cdot \nabla_{\mathbf{v}} \chi\right\rangle
$$

- Observe that $\langle\mathbf{c}\rangle=0$ (since $\mathbf{c}=\mathbf{v}-\mathbf{u}$ and $\langle\mathbf{v}\rangle=\mathbf{u}$). So $\langle\mathbf{v v}\rangle=\langle(\mathbf{u}+\mathbf{c})(\mathbf{u}+\mathbf{c})\rangle=\mathbf{u u}+\mathbf{u}\langle\mathbf{c}\rangle+\langle\mathbf{c}\rangle \mathbf{u}+\langle\mathbf{c}\rangle$.
That is, $\langle\mathbf{v} \mathbf{v}\rangle=\mathbf{u u}+\mathbb{P}$. Thus, since $\nabla_{\mathbf{v}} \cdot \mathbf{v}=\mathbb{I}$,

$$
\bar{\delta}_{t}(\rho \mathbf{u})+\nabla \cdot \mathbb{P}=\rho\langle\mathbf{a}\rangle .
$$

- But $\langle\mathbf{a}\rangle=\frac{q}{m}(\mathbf{E}+\mathbf{u} \times \mathbf{B})$. Thus:

$$
\begin{equation*}
\bar{\delta}_{t}(\rho \mathbf{u})+\nabla \cdot \mathbb{P}=\sigma \mathbf{E}+\mathbf{J} \times \mathbf{B}+\mathbf{R} . \tag{5}
\end{equation*}
$$

- Kinetic energy balance for species s equals momentum balance dot \mathbf{u} :

$$
\bar{\delta}_{t}^{\mathrm{s}}\left(\rho_{\mathrm{s}} \frac{1}{2}\left|\mathbf{u}_{\mathrm{s}}\right|^{2}\right)+\mathbf{u}_{\mathrm{s}} \cdot\left(\nabla \cdot \mathbb{P}_{\mathrm{s}}\right)=\mathbf{J}_{\mathrm{s}} \cdot \mathbf{E}+\mathbf{R}_{\mathrm{s}} \cdot \mathbf{u}_{\mathrm{s}}
$$

Taking moments: energy

Given definitions:

- $\mathcal{E}:=\rho\left\langle\frac{1}{2} v^{2}\right\rangle$ (energy density)
- $\mathbb{P}:=\rho\langle\mathbf{c c}\rangle$ (pressure tensor)
- $\left.\mathbf{q}:=\left.\rho\left\langle\frac{1}{2} \mathbf{c}\right| \mathbf{c}\right|^{2}\right\rangle$ (heat flux)
- $Q:=\sum \mathbf{r} \cdot \mathbf{c}$ (collisional heating)

Relationships:

- energy = kinetic plus thermal:

$$
\begin{aligned}
& \left.\left.\left.\langle | \mathbf{v}\right|^{2}\right\rangle=|\mathbf{u}|^{2}+\left.\langle | \mathbf{c}\right|^{2}\right\rangle, \text { i.e. } \\
& \left.\left.\left.\rho\left\langle\frac{1}{2}\right| \mathbf{v}\right|^{2}\right\rangle=\rho \frac{1}{2}|\mathbf{u}|^{2}+\left.\rho\left\langle\frac{1}{2}\right| \mathbf{c}\right|^{2}\right\rangle .
\end{aligned}
$$

- pressure is $\frac{2}{3}$ the thermal energy: $\left.p:=\left.\frac{1}{3} \rho\langle | \mathbf{c}\right|^{2}\right\rangle$, so $\mathcal{E}=\frac{1}{2} \rho|\mathbf{u}|^{2}+\frac{3}{2} p$.

Remarks:

- If restricting to species s, write e.g. Q_{s}.
- Including all particles, collisional energy production cancels:
$\sum \mathbf{r} \cdot \mathbf{v} m S=0$, i.e., $\mathbf{R} \cdot \mathbf{u}+Q=\sum_{\mathrm{s}}\left(\mathbf{R}_{\mathrm{s}} \cdot \mathbf{u}_{\mathrm{s}}+Q_{\mathrm{s}}\right)=0$
- $\mathbf{q}=0$ if the distribution of particle velocities is symmetric.

Energy balance ($\chi=\frac{1}{2}|\mathbf{v}|^{2}$):

- Recall generic moment evolution (Eqn. (3)):

$$
\rho \mathrm{d}_{t}\langle\chi\rangle+\nabla_{\mathbf{x}} \cdot(\rho\langle\mathbf{c} \chi\rangle)=\rho\left\langle\mathbf{a} \cdot \nabla_{\mathbf{v}} \chi\right\rangle
$$

- For $\chi=\frac{1}{2} \mathbf{v} \cdot \mathbf{v}$, using that:
- $\rho\left\langle\frac{1}{2} \mathbf{c v} \cdot \mathbf{v}\right\rangle=\rho\langle\mathbf{c}\rangle \cdot \mathbf{u}+\rho\left\langle\frac{1}{2} \mathbf{c c} \cdot \mathbf{c}\right\rangle=\mathbb{P} \cdot \mathbf{u}+\mathbf{q}$,
- $\rho\langle\mathbf{a} \cdot \mathbf{v}\rangle=\rho\left\langle\frac{q}{m} \mathbf{E} \cdot \mathbf{v}\right\rangle=\mathbf{E} \cdot \frac{q}{m} \rho \mathbf{u}=\mathbf{E} \cdot \mathbf{J}$ (that is, $\langle\mathbf{a} \cdot \mathbf{v}\rangle=\langle\mathbf{a}\rangle \cdot\langle\mathbf{v}\rangle$), and
- $\sum \mathbf{r} \cdot \mathbf{v} m S=\sum \mathbf{r} \cdot \mathbf{u} m S+\sum \mathbf{r} \cdot \mathbf{c} m S=\mathbf{R} \cdot \mathbf{u}+Q$,

$$
\begin{equation*}
\bar{\delta}_{t} \mathcal{E}+\nabla \cdot(\mathbb{P} \cdot \mathbf{u}+\mathbf{q})=\mathbf{J} \cdot \mathbf{E}+\mathbf{R} \cdot \mathbf{u}+Q \tag{6}
\end{equation*}
$$

Thermal energy balance for species s:

- Recall kinetic energy balance:

$$
\bar{\delta}_{t}^{\mathrm{s}}\left(\rho_{\mathrm{s}} \frac{1}{2}\left|\mathbf{u}_{\mathrm{s}}\right|^{2}\right)+\mathbf{u}_{\mathrm{s}} \cdot\left(\nabla \cdot \mathbb{P}_{\mathrm{s}}\right)=\mathbf{J}_{\mathrm{s}} \cdot \mathbf{E}+\mathbf{R}_{\mathrm{s}} \cdot \mathbf{u}_{\mathrm{s}}
$$

- Thermal energy balance equals energy balance minus kinetic energy balance:

$$
\left.\bar{\delta}_{t}^{\mathrm{s}}\left(\left.\rho_{\mathrm{s}}\left\langle\frac{1}{2}\right| \mathbf{c}_{\mathrm{s}}\right|^{2}\right\rangle\right)+\mathbb{P}_{\mathrm{s}}: \nabla \mathbf{u}_{\mathrm{s}}+\nabla \cdot \mathbf{q}_{\mathrm{s}}=Q_{\mathrm{s}}
$$

Conserved moment evolution

Full fluid equations (one species):

Gathering together equations (4), (5), and (6) and restricting to species s , we have a system of balance laws for the mass $(1)+$ momentum(3) + energy $(1)=5$ conserved moments:

$$
\begin{array}{ll}
\hline \bar{\delta}_{t}^{\mathrm{s}} \rho_{\mathrm{s}} & =0 \\
\bar{\delta}_{t}^{\mathrm{s}}\left(\rho_{\mathrm{s}} \mathbf{u}_{\mathrm{s}}\right)+\nabla \cdot \mathbb{P}_{\mathrm{s}} & =\sigma_{\mathrm{s}} \mathbf{E}+\mathbf{J}_{\mathrm{s}} \times \mathbf{B}+\mathbf{R}_{\mathrm{s}} \\
\bar{\delta}_{t}^{\mathrm{s}} \mathcal{E}_{\mathrm{s}}+\nabla \cdot\left(\mathbb{P}_{\mathrm{s}} \cdot \mathbf{u}_{\mathrm{s}}+\mathbf{q}_{\mathrm{s}}\right) & =\mathbf{J}_{\mathrm{s}} \cdot \mathbf{E}+\mathbf{R}_{\mathrm{s}} \cdot \mathbf{u}_{\mathrm{s}}+Q_{\mathrm{s}} \tag{7}
\end{array}
$$

MHD fluid equations:

The bulk fluid quantities of MHD are defined by

$$
\begin{aligned}
\rho & :=\rho_{\mathrm{i}}+\rho_{\mathrm{e}} \\
\rho \mathbf{u} & :=\rho_{\mathrm{i}} \mathbf{u}_{\mathrm{i}}+\rho_{\mathrm{e}} \mathbf{u}_{\mathrm{e}}, \\
\mathcal{E} & :=\mathcal{E}_{\mathrm{i}} \quad+\mathcal{E}_{\mathrm{e}}
\end{aligned}
$$

One-fluid MHD assumes that the fluid velocity is the same for all species: $\mathbf{u}_{i} \approx$ \mathbf{u}_{e}. In this case, summing

Remarks

- System (7) is in the form

$$
\begin{aligned}
& \bar{\delta}_{t} U+\nabla \cdot \widetilde{\mathbf{F}}=S, \quad \text { i.e., } \\
& \partial_{t} U+\nabla \cdot(\mathbf{u} U+\widetilde{\mathbf{F}})=S,
\end{aligned}
$$

which is in the balance form

$$
\partial_{t} U+\nabla \cdot \mathbf{F}=S .
$$

- One-fluid MHD assumes $\mathbf{u}_{\mathrm{i}} \approx \mathbf{u}_{\mathrm{e}}$, which holds in the limit $e \rightarrow \infty$. To see this, look at the charge density $\sigma=e\left(n_{\mathrm{i}}-n_{\mathrm{e}}\right)$ and current density $\mathbf{J}=e\left(\mathbf{u}_{i} n_{\mathrm{i}}-\mathbf{u}_{\mathrm{e}} n_{\mathrm{e}}\right)$. As $e \rightarrow \infty, \mathbf{J}$ and σ approach finite limiting values (because $\mu_{0} \sigma=c^{-2} \nabla \cdot \mathbf{E}$ and $\left.\mu_{0} \mathbf{J}=\nabla \times \mathbf{B}-c^{-2} \partial_{t} \mathbf{E}\right)$. Since $\sigma / e \rightarrow 0$ and $\mathbf{J} / e \rightarrow 0$, in the limit $e \rightarrow \infty, n_{\mathrm{i}}=n_{\mathrm{e}}$ and thus $\mathbf{u}_{\mathrm{i}}=\mathbf{u}_{\mathrm{e}}$.

Two-fluid moment system with closure

The pressure tensor is usually separated out into its scalar part $p_{\mathrm{s}}=\frac{1}{3} \operatorname{tr} \mathbb{P}_{\mathrm{s}}$ (where $\operatorname{tr} \mathbb{P}:=\mathbb{P}_{11}+$ $\mathbb{P}_{22}+\mathbb{P}_{33}$ is called the trace of the matrix \mathbb{P}) and its deviatoric (traceless) part $\mathbb{P}_{s}^{\circ}:=\mathbb{P}_{s}-p_{s} \mathbb{I}$. Since $\mathbb{P}_{\mathrm{s}}=p_{\mathrm{s}} \mathbb{I}+\mathbb{P}_{\mathrm{s}}^{\circ}, \nabla \cdot \mathbb{P}_{\mathrm{s}}=\nabla p_{\mathrm{s}}+\nabla \cdot \mathbb{P}_{\mathrm{s}}^{\circ}$. So more conventionally, system (7) would be written:

$$
\begin{align*}
& \partial_{t} \rho_{\mathrm{s}}+\nabla \cdot\left(\mathbf{u}_{\mathrm{s}} \rho_{\mathrm{s}}\right)=0 \\
& \partial_{t}\left(\rho_{\mathrm{s}} \mathbf{u}_{\mathrm{s}}\right)+\nabla \cdot\left(\rho_{\mathrm{s}} \mathbf{u}_{\mathrm{s}} \mathbf{u}_{\mathrm{s}}\right)+\nabla p_{\mathrm{s}}+\nabla \cdot \mathbb{P}_{\mathrm{s}}^{\circ}=\sigma_{\mathrm{s}} \mathbf{E}+\mathbf{J}_{\mathrm{s}} \times \mathbf{B}+\mathbf{R}_{\mathrm{s}} \tag{8}\\
& \partial_{t} \mathcal{E}_{\mathrm{s}}+\nabla \cdot\left(\left(\mathcal{E}_{\mathrm{s}}+p_{\mathrm{s}}\right) \mathbf{u}_{\mathrm{s}}+\mathbb{P}_{\mathrm{s}}^{\circ} \cdot \mathbf{u}_{\mathrm{s}}+\mathbf{q}_{\mathrm{s}}\right)=\mathbf{J}_{\mathrm{s}} \cdot \mathbf{E}+\mathbf{R}_{\mathrm{s}} \cdot \mathbf{u}_{\mathrm{s}}+Q_{\mathrm{s}}
\end{align*}
$$

The system (8) agrees exactly with the kinetic equation. The only problem is that it is not closed: the red terms are unkown unless we make an assumption about the particle distribution. Fluid closures assume that intraspecies collisions are fast enough to keep the distribution close to Maxwellian. If the distribution is Maxwellian then the red quantities, deviatoric pressure \mathbb{P}_{s}° and heat flux q_{s}, will be zero. The blue terms require an interspecies collision assumption. We assume that the drag force is pro-
portional to the interspecies drift velocity:

$$
\begin{equation*}
-\mathbf{R}_{\mathrm{i}}=\mathbf{R}_{\mathrm{e}}=e^{2} n_{\mathrm{e}} n_{\mathrm{i}} \eta \cdot\left(\mathbf{u}_{\mathrm{i}}-\mathbf{u}_{\mathrm{e}}\right), \tag{9}
\end{equation*}
$$

where η is a proportionality constant called the resistivity and we have used that $\mathbf{R}_{i}+\mathbf{R}_{\mathrm{e}}=0$. Since $0=\mathbf{R}_{\mathrm{i}} \cdot \mathbf{u}_{\mathrm{i}}+Q_{\mathrm{i}}+\mathbf{R}_{\mathrm{e}} \cdot \mathbf{u}_{\mathrm{e}}+Q_{\mathrm{e}}$, the total heating $Q:=Q_{\mathrm{i}}+Q_{\mathrm{e}}$ (caused by resistive drag) is $Q=-\sum \mathbf{R}_{\mathrm{s}} \cdot \mathbf{u}_{\mathrm{s}} \approx \mathbf{J} \cdot \eta \cdot \mathbf{J}$, and for simplicity we can assume that resistive heating is allocated among the species in inverse proportion to the mass of each species.

Outline

© Vlasov: fluid in phase space
(2) Presentation of plasma models
(3) Derivation of plasma models
(1) MHD

MHD bulk fluid moments

Magnetohydrodynamics (MHD) regards the plasma as a single fluid and evolves total mass, momentum, and energy densities. The bulk fluid quantities of MHD are thus defined by summing over all species:

$$
\begin{aligned}
\rho & :=\rho_{\mathrm{i}}+\rho_{\mathrm{e}} \\
\rho \mathbf{u} & :=\rho_{\mathrm{i}} \mathbf{u}_{\mathrm{i}}+\rho_{\mathrm{e}} \mathbf{u}_{\mathrm{e}}, \\
\mathcal{E} & :=\mathcal{E}_{\mathrm{i}}+\mathcal{E}_{\mathrm{e}}
\end{aligned}
$$

To obtain a closed system, MHD models impose two fundamental simplifying assumptions:
(1) quasineutrality: $n_{i}=n_{\mathrm{e}}=: n$ (or more generally, $\sigma / e \rightarrow 0$).
(2) Ohm's law: $\mathbf{E}=\mathbf{B} \times \mathbf{u}+\ldots$..

Ohm's law replaces electric field evolution and thus eliminates light waves from the system.

The divergence constraint $\nabla \cdot \mathbf{E}=\mu_{0} c^{2} e\left(n_{\mathrm{i}}-n_{\mathrm{e}}\right)$ says that quasineutrality is justified if $c \rightarrow \infty$ (classical, two-fluid MHD) or if $e \rightarrow \infty$ (one-fluid, possibly relativistic MHD).

One-fluid MHD additionally assumes that all species have approximately the same fluid velocity:

$$
\mathbf{u}_{\mathrm{i}} \approx \mathbf{u}_{\mathrm{e}}
$$

this assumption is enforced as $e \rightarrow \infty$ both by the strong electrical current $\mathbf{J}=e\left(\mathbf{u}_{i} n_{i}-\mathbf{u}_{\mathrm{e}} n_{\mathrm{e}}\right)$ and by the strong resistive drag $\mathbf{R}_{\mathrm{e}}=e^{2} n_{\mathrm{e}} n_{\mathrm{i}} \eta \cdot\left(\mathbf{u}_{\mathrm{i}}-\mathbf{u}_{\mathrm{e}}\right)=-\mathbf{R}_{\mathrm{i}}$ that would otherwise result.

With this simplifying assumption, summing the system (8) over all species gives:

$$
\begin{align*}
& \partial_{t} \rho+\nabla \cdot(\mathbf{u} \rho)=0 \\
& \partial_{t}(\rho \mathbf{u})+\nabla \cdot(\rho \mathbf{u u})+\nabla p+\nabla \cdot \mathbb{P}^{\circ}=\sigma \mathbf{E}+\mathbf{J} \times \mathbf{B} \\
& \partial_{t} \mathcal{E}+\nabla \cdot\left((\mathcal{E}+p) \mathbf{u}+\mathbb{P}^{\circ} \cdot \mathbf{u}+\mathbf{q}\right)=\mathbf{J} \cdot \mathbf{E} \tag{10}
\end{align*}
$$

MHD: Ohm's law

Recall from page 18 the momentum evolution equation (5). For electrons it says:
$\bar{\delta}_{t}\left(\rho_{\mathrm{e}} \mathbf{u}_{\mathrm{e}}\right)+\nabla \cdot \mathbb{P}_{\mathrm{e}}=\sigma_{\mathrm{e}}\left(\mathbf{E}+\mathbf{u}_{\mathrm{e}} \times \mathbf{B}\right)+\mathbf{R}_{\mathrm{e}}$.
In the limit $e \rightarrow \infty$, the electron charge density $\sigma_{\mathrm{e}}=-e n_{\mathrm{e}}$ becomes infinite. Assuming that the left side remains finite, dividing by σ_{e} makes the left side zero. Solving for \mathbf{E},

$$
\mathbf{E}=\mathbf{B} \times \mathbf{u}_{e}+\frac{\mathbf{R}_{\mathrm{e}}}{\sigma_{\mathrm{e}}}
$$

In the MHD limit $n_{i} \approx n_{\mathrm{e}}=: n$, so the current is $\mathbf{J}=e n\left(\mathbf{u}_{\mathrm{i}}-\mathbf{u}_{\mathrm{e}}\right)$ and the drag closure (9) becomes $\mathbf{R}_{\mathrm{e}}=e n \eta \cdot \mathbf{J}$, i.e., $\frac{\mathbf{R}_{\mathrm{e}}}{\sigma_{\mathrm{e}}}=-\boldsymbol{\eta} \cdot \mathbf{J}$. So Ohm's law says:

$$
\begin{array}{rrr}
\mathbf{E}=\mathbf{B} \times \mathbf{u} & \text { (ideal term) } \\
& +\boldsymbol{\eta} \cdot \mathbf{J} & \text { (resistive term) } .
\end{array}
$$

Classical MHD

In the classical limit, $c \rightarrow \infty$. This yields two important simplifications:

- Charge neutrality:

$$
\sigma=0
$$

Indeed, the divergence constraint $\mu_{0} \sigma=c^{-2} \nabla \cdot \mathbf{E}$ implies that $\sigma \approx 0$.
(3) Ampere's law:

$$
\mathbf{J}=\mu_{0}^{-1} \nabla \times \mathbf{B}
$$

Indeed, the displacement current $\partial_{t} \mathbf{E}$ disappears in Maxwell-Ampere:

$$
\mu_{0} \mathbf{J}:=\nabla \times \mathbf{B}-c^{-2} \partial_{t} \mathbf{E} .
$$

Putting it all together, we have...

Classical Resistive MHD

MHD system:

$\partial_{t} \rho+\nabla \cdot(\rho \mathbf{u})=0$
$\rho \mathrm{d}_{t} \mathbf{u}+\nabla p+\nabla \cdot \mathbb{P}^{\circ}=\mathbf{J} \times \mathbf{B} \quad$ (momentum balance),
$\bar{\delta}_{t} \mathcal{E}+\nabla \cdot\left(\mathbf{u p}+\mathbf{u} \cdot \mathbb{P}^{\circ}+\mathbf{q}\right)=\mathbf{J} \cdot \mathbf{E} \quad$ (energy balance),
$\partial_{t} \mathbf{B}+\nabla \times \mathbf{E}=0$ (magnetic field evolution).

The divergence constraint $\nabla \cdot \mathbf{B}=0$ is maintained by exact solutions and must be maintained in numerical solutions.

Electromagnetic closing relations:

$\mathbf{J}:=\mu_{0}^{-1} \nabla \times \mathbf{B} \quad$ (Ampere's law for current)
$\mathbf{E} \approx \mathbf{B} \times \mathbf{u}+\boldsymbol{\eta} \cdot \mathbf{J} \quad$ (Ohm's law for electric field)
In a reference frame moving with the fluid, \mathbf{B} remains unchanged but the electric field becomes $\mathbf{E}^{\prime}=\mathbf{E}+\mathbf{u} \times \mathbf{B}=$ $\eta \cdot \mathbf{J}$. So Ohm's law says that, in the reference frame of the fluid, the electric field is proportional to current (i.e. to the drift velocity of the electrons). In other words, the electric field balances the resistive drag force.

Fluid closure:

$$
\begin{aligned}
p & =\frac{2}{3}\left(\mathcal{E}-\frac{1}{2} \rho|\mathbf{u}|^{2}\right), \\
\mathbb{P}^{\circ} & \approx-2 \mu:\left((\nabla \mathbf{u})^{\circ}\right), \\
\mathbf{q} & \approx-\mathbf{k} \cdot \nabla T ;
\end{aligned}
$$

$(\nabla \mathbf{u})^{\circ}:=\frac{1}{2}\left(\nabla \mathbf{u}+(\nabla \mathbf{u})^{T}\right)-\frac{1}{3} \nabla \cdot \mathbf{u}$ is the deviatoric strain rate.
Closure tensors: We will neglect the viscosity μ and heat conductivity k . In the presence of a strong magnetic field, μ and \mathbf{k} are tensors, not scalars. In a tokamak, heat conductivity perpendicular to the magnetic field can be a million times weaker than parallel to the magnetic field, helping to confine heat. The reason is that particles spiral tightly around magnetic field lines and so easily drift along field lines. On the other hand, even when the magnetic field is strong, it is safe to assume that the resistivity η is a scalar (i.e., $\eta=\eta \mathbb{I}$) and we will make this simplification.

Thermal energy evolution in MHD

To obtain a thermal energy evolution equation for MHD, we imitate the procedure for gas dynamics by subtracting kinetic energy evolution from total gas dynamic energy evolution.

Recall momentum balance:

$$
\rho d_{t} \mathbf{u}+\nabla p+\nabla \cdot \mathbb{P}^{\circ}=\mathbf{J} \times \mathbf{B}
$$

Kinetic energy balance is \mathbf{u} dot momentum balance:

$$
\frac{1}{2} \rho d_{t}|\mathbf{u}|^{2}+\mathbf{u} \cdot \nabla p+\mathbf{u} \cdot\left(\nabla \cdot \mathbb{P}^{\circ}\right)=\mathbf{u} \cdot(\mathbf{J} \times \mathbf{B}) .
$$

Recall total gas-dyanamic energy balance:

$$
\bar{\delta}_{t} \mathcal{E}+\nabla \cdot\left(\mathbf{u p}+\mathbf{u} \cdot \mathbb{P}^{\circ}+\mathbf{q}\right)=\mathbf{J} \cdot \mathbf{E}
$$

Subtracting kinetic energy balance from this yields thermal energy balance:

$$
\bar{\delta}_{t}\left(\frac{3}{2} p\right)+p \nabla \cdot \mathbf{u}+\mathbb{P}^{\circ}: \nabla \mathbf{u}+\nabla \cdot \mathbf{q}=\mathbf{J} \cdot \mathbf{E}^{\prime}
$$

where we have used that thermal energy is $\frac{3}{2}$ the pressure, i.e., $\mathcal{E}=\frac{3}{2} p+\frac{1}{2} \rho|\mathbf{u}|^{2}$, and where $\mathbf{E}^{\prime}:=\mathbf{E}+\mathbf{u} \times \mathbf{B}$ is the electric field in the reference frame of the fluid.
For resistive MHD,

$$
\mathbf{E}^{\prime}=\eta \cdot \mathbf{J}
$$

Recall that

$$
\bar{\delta}_{t} p=\partial_{t} p+\nabla \cdot(\mathbf{u} p)=\mathrm{d}_{t} p+p \nabla \cdot \mathbf{u}
$$

so

$$
\frac{3}{2} \bar{\delta}_{t} p+p \nabla \cdot \mathbf{u}=\frac{3}{2} \mathrm{~d}_{t} p+\frac{5}{2} p \nabla \cdot \mathbf{u}
$$

Assuming that $\mathbb{P}^{\circ}=0$ and $q=0$, pressure evolution becomes

$$
\mathrm{d}_{t} p+\gamma \nabla \cdot \mathbf{u}=\frac{2}{3} \eta \cdot \mathbf{J}
$$

where $\gamma:=\frac{5}{3}$ is the adiabatic index.

Conservation form of MHD

A fundamental principle of physics is that total momentum and energy are conserved. This means that we should be able to put e.g. the momentum evolution equation in conservation form $\partial_{t} Q+\nabla \cdot \mathbf{F}=0$.

To put momentum evolution in conservation form, we write the source term as a divergence using Ampere's law, vector calculus, and $\nabla \cdot \mathbf{B}=0$:

$$
\begin{aligned}
& -\mu_{0} \mathbf{J} \times \mathbf{B}=\mu_{0} \mathbf{B} \times \mathbf{J} \\
& =\mathbf{B} \times \nabla \times \mathbf{B} \\
& =(\nabla \mathbf{B}) \cdot \mathbf{B}-\mathbf{B} \cdot \nabla \mathbf{B} \\
& =\nabla\left(\mathbf{B}^{2} / 2\right)-\nabla \cdot(\mathbf{B B}) \\
& =\nabla \cdot\left(\mathbb{\mathbf { B } ^ { 2 }} / 2-\mathbf{B B}\right) .
\end{aligned}
$$

To put energy evolution in conservation form, we write the source term as a time-derivative plus a divergence, using Ampere's law, the identity $\nabla \cdot(\mathbf{E} \times \mathbf{B})=\mathbf{B} \cdot \nabla \times \mathbf{E}-\mathbf{E} \cdot \nabla \times \mathbf{B}$, and Faraday's law:

$$
\begin{aligned}
& -\mu_{0} \mathbf{E} \cdot \mathbf{J} \\
& =-\mathbf{E} \cdot \nabla \times \mathbf{B} \\
& =\nabla \cdot(\mathbf{E} \times \mathbf{B})-\mathbf{B} \cdot \nabla \times \mathbf{E} \\
& =\nabla \cdot(\mathbf{E} \times \mathbf{B})+\mathbf{B} \cdot \partial_{t} \mathbf{B} \\
& =\nabla \cdot(\mathbf{E} \times \mathbf{B})+\partial_{t}\left(\mathbf{B}^{2} / 2\right) .
\end{aligned}
$$

So MHD in conservation form reads

$$
\begin{array}{lr}
\partial_{t} \rho+\nabla \cdot(\rho \mathbf{u})=0 & \text { (mass continuity), } \\
\rho \mathrm{d}_{t} \mathbf{u}+\nabla \cdot\left(\mathbb{I}\left(p+\frac{B^{2}}{2 \mu_{0}}\right)+\mu_{0}^{-1} \mathbf{B B}+\mathbb{P}^{\circ}\right)=0, & \text { (momentum conservation), } \\
\partial_{t}\left(\mathcal{E}+\frac{\mathbf{B}^{2}}{2 \mu_{0}}\right)+\nabla \cdot\left(\mathbf{u}(\mathcal{E}+p)+\mathbf{u} \cdot \mathbb{P}^{\circ}+\mathbf{q}+\mu_{0}^{-1} \mathbf{E} \times \mathbf{B}\right)=0, & \text { (energy conservation), } \\
\partial_{t} \mathbf{B}+\nabla \times \mathbf{E}=0 & \text { (magnetic field evolution), }
\end{array}
$$

where we now recognize $p_{B}:=\frac{\mathbf{B}^{2}}{2 \mu_{0}}$ as both the pressure and the energy of the magnetic field.

Notes on tensors

An nth order tensor has n subscripts each of which runs from 1 to 3 . For example, $\mathbb{P}_{i j}=\rho\left\langle\mathbf{c}_{i} \mathbf{c}_{j}\right\rangle$ is a second-order tensor (i.e. a 3×3 matrix).

The tensor project of an nth order tensor A and an m th order tensor B is an
$(n+m)$ th order tensor
$A B=A \otimes B$, where $(A B)_{i_{1} \ldots i_{n j} j_{1} \ldots j_{m}}=$ $A_{i_{1} \ldots i_{n}} B_{j_{1} \ldots j_{m}}$. For example,

$$
(\mathbf{u} \mathbb{P})_{i j k}:=\mathbf{u}_{i} \mathbb{P}_{j k}
$$

The unique second-order tensor that is invariant under rotation of coordinates is the Kronecker delta:

$$
\delta_{i j}= \begin{cases}1 & \text { if } i=j \\ 0 & \text { otherwise }\end{cases}
$$

The unique third-order tensor that remain unchanged under rotation of coordinates is the Levi-Civita symbol:

$$
\begin{aligned}
1 & =\epsilon_{123}=\epsilon_{231}=\epsilon_{312}, \\
-1 & =\epsilon_{213}=\epsilon_{321}=\epsilon_{132}, \text { and } \\
0 & =\epsilon_{i j k} \text { if } i=j \text { or } j=k \text { or } i=k .
\end{aligned}
$$

The Einstein summation

 convention says that there is an implied sum over a repeated index in a term. A non-summed index is called a free index. For example, the cross product is defined by $(\mathbf{u} \times \mathbf{v})_{i}=\epsilon_{i j k} \mathbf{u}_{j} \mathbf{v}_{k}$, where i is the free index.The dot product of two tensors is the tensor product contracted (summed) over adjacent indices. E.g. $\mathbf{u} \cdot \mathbf{v}=\mathbf{u}_{i} \mathbf{v}_{i}$ and $(\mathbf{u} \cdot \mathbb{P})_{i}=\mathbf{u}_{j} \mathbb{P}_{j i}$.

The trace of a tensor is its contraction over its first two indices: $\operatorname{tr} \mathbb{P}=\mathbb{P}_{i j}$ and $\mathbf{u} \cdot \mathbf{v}=\operatorname{tr}(\mathbf{u v})$.

The transpose of a matrix is defined by $M_{i j}^{T}=M_{j j}$.

A symmetric matrix M (such as the pressure tensor \mathbb{P}) satisfies $M^{T}=M$.

References

[GP04] J.P. Goedbloed and S. Poedts, Principles of magnetohydrodynamics: with applications to laboratory and astrophysical plasmas, Cambridge University Press, 2004.
[JoPlasmaNotes] E.A. Johnson, Plasma modeling notes,
http://www.danlj.org/eaj/math/summaries/plasma.html
[JoPresentations] E.A. Johnson, Presentations (including this one)
http://www.danlj.org/eaj/research/presentations/

