
Fluid models from multi-fluid to resistive MHD

Alec Johnson

Centre for mathematical Plasma Astrophysics
Mathematics Department

KU Leuven

Nov 28, 2013

Abstract: The fundamental plasma equations consist of Maxwell’s equations
for the electromagnetic field coupled to the kinetic equations for particle mo-
tion. The two-fluid model replaces the kinetic equations with fluid equations
and is appropriate when intraspecies collisions are frequent enough to keep
the distribution of particle velocities nearly symmetric. On time scales for which
plasma oscillations are rapid, positive and negative charges must balance, and
the plasma acts like a single, conducting fluid described by the equations of
resistive magnetohydrodynamics (MHD).

Johnson (KU Leuven) Fluid models Nov 28, 2013 1 / 30



Outline

1 Vlasov: fluid in phase space

2 Presentation of plasma models

3 Derivation of plasma models

4 MHD

Johnson (KU Leuven) Fluid models Nov 28, 2013 2 / 30



Conservation law framework

Quantities:

t = time
X = position
U(t ,X) = balanced quantity
F(t ,X) = flux function (e.g. F(U)).

S(t ,X) = 0 (no production of U).

Definitions:
Ω = arbitrary region

dΩ: volume element

dt dΩS: production in volume element

n̂ = outward unit vector

dA = n̂dA: surface element

dt dA ·F(t ,X) = flux of U out of
surface element. To see that flux is
linear in dA, consider that Ω can be
approximated by a set of cells in a
rectangular grid. dt dA1F1 gives flux
across face perpendicular to first axis;
dA1 is area of projection of surface
element onto first axis.
Note: F = T in picture.

Balance law:

(∀Ω)
∫

ΩU(t1)−
∫

Ω
U(t0)

= −
∮
∂Ω

dA ·
∫t1

t0
F

⇐⇒ (∀Ω) dt
∫

Ω
U = −

∮
∂Ω

dA ·F

⇐⇒ (∀Ω)

∫
Ω

(∂t U +∇ ·F) = 0

⇐⇒ ∂t U +∇ ·F = 0 .
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Balance law framework

Quantities:

t = time
X = position
U(t ,X) = balanced quantity
F(t ,X) = flux function (e.g. F(U)).

S(t ,X) = production of U.

Definitions:
Ω = arbitrary region

dΩ: volume element

dt dΩS: production in volume element

n̂ = outward unit vector

dA = n̂dA: surface element

dt dA ·F(t ,X) = flux of U out of
surface element. To see that flux is
linear in dA, consider that Ω can be
approximated by a set of cells in a
rectangular grid. dt dA1F1 gives flux
across face perpendicular to first axis;
dA1 is area of projection of surface
element onto first axis.
Note: F = T in picture.

Balance law:

(∀Ω)
∫

ΩU(t1)−
∫

Ω
U(t0)

= −
∮
∂Ω

dA ·
∫t1

t0
F +

∫
Ω

∫ t1
t0

S

⇐⇒ (∀Ω) dt
∫

Ω
U = −

∮
∂Ω

dA ·F +
∫

Ω
S

⇐⇒ (∀Ω)

∫
Ω

(∂t U +∇ ·F− S) = 0

⇐⇒ ∂t U +∇ ·F = S .
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Transport Derivatives

Given:

t = time

X = position

V(t ,X) = velocity field

α(t , x) = arbitrary function

ρ(t , x) = density convected by V
dt := d

dt

δtα := ∂tα+∇ · (Vα)

= “transport derivative” of α.

dtα := ∂tα+ V ·∇α
= material derivative of α.

Properties:

δtα = dtα+ α∇ ·V .

δt (αβ) = dt (αβ) + (∇ ·V)αβ
= (dtα)β + α(dtβ) + (∇ ·V)αβ
= (δtα)β + α(dtβ).

δt (ρβ) = ρdtβ .

Conservation of transported material:

ρ(t , x) is transported by V
⇐⇒ F := Vρ is a flux for ρ
⇐⇒ ∂tρ+∇ · (Vρ) = 0

⇐⇒ δtρ = 0
⇐⇒ dtρ+ ρ∇ ·V = 0
⇐⇒ dt ln ρ = −∇ ·V.

Incompressible flow:

V is incompressible
⇐⇒ dtρ = 0
⇐⇒ dt ln ρ = 0
⇐⇒ ∇ ·V = 0

⇐⇒ dtα = δtα (∀α).
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Vlasov equation

Given:

x: position

v =
.
x: velocity

a =
.
v: acceleration

f̃s: number distribution of species s.

f̃s(t , x, v)dxdv: number of particles of
species s in a region of state space with
volume dxdv.

ms: particle mass of species s

qs: particle charge of species s

fs = ms f̃s: mass distribution of species s.

as = qs
ms

(E + v× B): Lorentz acceleration.

X := (x, v): position in state space.

V :=
.
X = (v, as): velocity in state space.

(v× B)i =
∑

j
∑

k εijk vj Bk (cross product)

εijk : Levi-Civita symbol

We suppress the species index s when focusing
on one species.

Theorem: Lorentz acceleration implies
incompressible flow in phase space.

Incompressible means ∇X ·V = 0.

∇X ·V = ∇x · v +∇v · a
∇x · v = 0 because x and v are
independent variables.

∇v ·E(t , x) = 0 for same reason.

So ∇v · a = q
m

∂
∂vi
εijk vj Bk (t , x) = 0.

Vlasov equation (conservation of particles):

f (t ,X) is transported by V
⇐⇒ ∂t f +∇X · (Vf ) = 0

⇐⇒ ∂t f +∇x · (vf ) +∇v · (af ) = 0

(conservation form)

⇐⇒ ∂t f + v ·∇xf + a ·∇v · f = 0

⇐⇒ ∂t f + V ·∇Xf = 0

Remark: conservation form is preferred for
taking fluid moments.
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kinetic-Maxwell and the fluid limit

Kinetic-Maxwell:

particle equations:

dt xp = vp,

dt vp = e
q#

p
mp

(vp × B(xp) + E(xp)) + r

electromagnetic field:

∂t B +∇× E = 0,

−c−2∂t E +∇× B = µ0J,

∇ ·B = 0, c−2∇ ·E = µ0σ.

charge-weighted moments:

σ(x) := e
∑

pSp(x− xp)q#
p ,

J(x) := e
∑

pSp(x− xp)q#
p vp.

Plugging v̇p =
qp
mp

(vp × B + E) into the
time-derivative of mass (

∑
pSpmp),

momentum (
∑

pvpSpmp), and energy
(
∑

p
1
2 v2

p Spmp) density yields gas (i.e.
fluid) equations.

Fluid approximation:

∂tρ+∇ · (ρu) = 0 (mass),

ρdt u +∇p +∇ ·P◦ = J× B + σE + R (momentum),

dt p + γp∇ ·u + P◦ :∇u +∇ ·q = 0 (energy),

where we have used the definitions

σ :=
∑

qS,

ρ :=
∑

mS,

R :=
∑

rmS,

J :=
∑

vqS,

ρu :=
∑

vmS,

c := v− u,

p := 1
3
∑

c2mS,

P :=
∑

ccmS,

P◦ := P− pI,

with the abbreviations

m := mp,

q := eq#
p ,

S := Sp(x− xp),∑
:=
∑

p,

and the chain rule ∂t S = −v ·∇S.

Assuming that particle velocities for each species have
a symmetric distribution implies P◦s = 0 and qs = 0,
giving Euler gas dynamics for each species, hence the
ideal two-fluid Maxwell plasma model.
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Modeling parameters

Physical constants that define an
ion-electron plasma:

1 e (charge of proton),
2 mi , me (ion and electron mass),
3 c (speed of light),
4 µ0 (vacuum permeability).

MHD parameters that characterize
the state of a plasma:

1 n0 (typical particle density),
2 T0 (typical temperature),
3 B0 (typical magnetic field).

Derived typical quantities:

p0 := n0T0 (thermal pressure)

pB :=
B2

0
2µ0

(magnetic pressure)

ρs := n0ms (mass density).

Collision periods:

τs: period of relaxation of
species s toward Maxwellian

Collisionless time, velocity, and space scale parameters:

plasma frequencies: ω2
p,s :=

µ0n0(ce)2

ms
,

gyrofrequencies: ωg,s :=
eB0

ms
,

thermal velocities: v2
t,s :=

2p0

ρs
,

Alfvén speeds: v2
A,s :=

2pB

ρs
=

B2
0

µ0msn0
,

Debye length: λD :=
vt,s

ωp,s
=

√
T0

n0µ0(ce)2
,

gyroradii: rg,s :=
vt,s

ωg,s
=

msvt,s

eB0
,

skin depths: δs :=
vA,s

ωg,s
=

c
ωp,s

=

√
ms

µ0nse2
.

plasma β := p0
pB

=
( vt,s

vA,s

)2
=
( rg,s
δs

)2
.

non-MHD ratio: c
vA,s

=
rg,s
λD

=
ωp,s
ωg,s

.
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Plasma model hierarchy

1 kinetic-Maxwelly fast collisions (τs
−1 →∞)

2 ideal two-fluid Maxwell: Euler gas for each species: ρs, us, psy fast oscillations (e→∞)

3 relativistic ideal MHD: perfectly conducting gasy fast light waves (c →∞)

4 classical ideal MHD: perfectly conducting gas: E = B× u.
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two-fluid Maxwell→ MHD

Two-fluid Maxwell:

gas evolution:

∂tρs +∇ · (ρsus) = 0,

ρsd s
t us +∇ps = Js × B + σsE + Rs,

d s
t ps + γps∇ ·us = 2

3
mred
ms

Q

electromagnetic field:

∂t B +∇× E = 0,

−c−2∂t E +∇× B = µ0J,

∇ ·B = 0, c−2∇ ·E = µ0σ,

J := Ji + Je, Js := σsus,

σ := σi + σe, σs := ± e
ms
ρs.

closure:

−Ri = Re = e2neniη · (ui − ue)

≈ enη · J,
Q = −

∑
sRs ·us ≈ J ·η · J.

Quasi-relativistic MHD (e→∞):

gas evolution:

∂tρ+∇ · (ρu) = 0 (mass),

ρdt u +∇p = J× B + σE (momentum),

dt p + γp∇ ·u = 2
3 J ·η · J (thermal energy).

magnetic field:

∂t B +∇× E = 0 (magnetic field),

E = B× u + η · J (Ohm’s law),

∇ ·B = 0 (divergence constraint),

µ0J := ∇× B− c−2∂t E (Ampere’s law for current),

µ0σ := c−2∇ ·E (quasineutrality).

definitions:

d s
t := ∂t + us ·∇,

dt := ∂t + u ·∇,

γ := 5
3 ,

m−1
red :=

∑
s

m−1
s .
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two-fluid Maxwell→ MHD

Two-fluid Maxwell:

gas evolution:

∂tρs +∇ · (ρsus) = 0,

ρsd s
t us +∇ps = Js × B + σsE + Rs,

d s
t ps + γps∇ ·us = 2

3
mred
ms

Q

electromagnetic field:

∂t B +∇× E = 0,

−c−2∂t E +∇× B = µ0J,

∇ ·B = 0, c−2∇ ·E = µ0σ,

J := Ji + Je, Js := σsus,

σ := σi + σe, σs := ± e
ms
ρs.

closure:

−Ri = Re = e2neniη · (ui − ue)

≈ enη · J,
Q = −

∑
sRs ·us ≈ J ·η · J.

Classical MHD (e→∞, c →∞):

gas evolution:

∂tρ+∇ · (ρu) = 0 (mass),

ρdt u +∇p = J× B (momentum),

dt p + γp∇ ·u = 2
3 J ·η · J (thermal energy).

magnetic field:

∂t B +∇× E = 0 (magnetic field),

E = B× u + η · J (Ohm’s law),

∇ ·B = 0 (divergence constraint),

µ0J := ∇× B (Ampere’s law for current),

µ0σ := 0 (neutrality).

definitions:

d s
t := ∂t + us ·∇,

dt := ∂t + u ·∇,

γ := 5
3 ,

m−1
red :=

∑
s

m−1
s .
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kinetic-Maxwell (the “truth”)

particle evolution:

dt xp = vp,

dt vp = ap(xp, vp),

ap =
qp
mp

(vp × B(xp) + E(xp)) + rp.

electromagnetic field:

∂t B +∇× E = 0,

−c−2∂t E +∇× B = µ0J,

∇ ·B = 0, c−2∇ ·E = µ0σ.

charge-weighted moments:

σ(x) :=
∑

pSp(x)qp,

J(x) :=
∑

pSp(x)qpvp;

here Sp(x) = S(x− xp) is the shape
function of particle p, xp is its position, vp
is its velocity, rp is collisional drag, E is
electric field, B is magnetic field, J is
current, and σ is charge density.

Collisional drag.
The term rp can be used to incorporate gravitational
acceleration, but in this context we introduce rp to
account for microscale interactions not accounted for
by macroscale smoothed versions of the
electromagnetic field.

Collisional drag must conserve momentum and energy:∑
rpmpSp = 0 (momentum),∑
rp · vpmpSp = 0 (energy).

(1)

Collision operator [aside].

For each species s, specifying r is equivalent to
specifying a collision operator C. Indeed,
requiring the collisional Vlasov equation

∂t f +∇ · (vf ) +∇v · (af ) = C

to agree with the “drag force” Vlasov equation

∂t f +∇ · (vf ) +∇v · ((a + r)f ) = 0

reveals that

−∇v · (rf ) = C

must hold; to solve,
set rf = ∇φ, where
−∇2

vφ = C.
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kinetic-Maxwell and moments

particle evolution:

dt xp = vp,

dt vp = ap(xp, vp),

ap =
qp
mp

(vp × B(xp) + E(xp)) + rp. (2)

electromagnetic field:

∂t B +∇× E = 0,

−c−2∂t E +∇× B = µ0J,

∇ ·B = 0, c−2∇ ·E = µ0σ.

charge-weighted moments:

σ(x) :=
∑

pSp(x)qp,

J(x) :=
∑

pSp(x)qpvp;

here Sp(x) = S(x− xp) is the shape
function of particle p, xp is its position, vp
is its velocity, rp is collisional drag, E is
electric field, B is magnetic field, J is
current, and σ is charge density.

Fluid models evolve mass-weighted moments:

ρ(x) :=
∑

pmpSp(x) (mass),

M(x) :=
∑

pvpmpSp(x) (momentum),

E(x) :=
∑

p
1
2 |vp|2mpSp(x) (energy),

To abbreviate we drop the particle summation index p
and the independent variable x and write

σ :=
∑

qS (charge),

ρ :=
∑

mS (mass),

J :=
∑

vqS (current),

M :=
∑

vmS (momentum),

E :=
∑ 1

2 |v |
2mS (energy).

To get fluid equations, differentiate and use:

v̇ = q
m (E + v× B) + r

∂t S(x− xp(t)) = −v̇p ·∇S(x− xp), i.e.,

∂t S = −v ·∇S .
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Moment evolution: from kinetic to fluid

Given definitions:

χ(v) =


1 zeroth moment
v first moment
v2 second moment

〈χ〉 :=

∑
χmS∑
mS

(statistical mean of χ).

ρ :=
∑

mS (mass density)

ρ〈χ〉 :=
∑

χmS .

(generic moment)

u := 〈v〉 (fluid velocity)

c := v− u (thermal velocity)

δtα := ∂tα +∇ · (uα)
(“transport derivative”).

dtα := ∂tα + u ·∇α.
(advective derivative).

M = ρu (momentum).

subscript s restricts sums to
particles of species s.

ns =
∑

p∈s Sp = 1
ms
ρs (number

density)

Generic mass moment evolution:

∂t
∑
χmS =

∑
χm∂t S +

∑
χ̇mS

⇐⇒ ∂t (ρ〈χ〉) +
∑

χv ·m∇S =
∑

χ̇mS

⇐⇒ ∂t (ρ〈χ〉) +∇·
∑

vχmS =
∑

v̇ ·∇vχmS

⇐⇒ ∂t (ρ〈χ〉) +∇ · (ρ〈vχ〉) = ρ〈v̇ ·∇vχ〉

⇐⇒ δt (ρ〈χ〉) +∇ · (ρ〈cχ〉) = ρ〈a ·∇vχ〉 ; (3)

in the last step we have used that
〈vχ〉 = 〈(u + c)χ〉 = u〈χ〉+ 〈cχ〉 and
δt (ρ〈χ〉) = ∂t (ρ〈χ〉) +∇ · (u〈χ〉).

Mass continuity. (χ = 1).

If χ = 1, then 〈cχ〉 = 〈c〉 = 0 and ∇vχ = 0, so we simply
get δtρ = 0, that is,

∂tρ+∇ · (uρ) = 0.

Exercise: Using mass continuity, show that
δt (ρ〈χ〉) = ρdt 〈χ〉.
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Continuity equations

Charge continuity.
Differentiating the definition of charge
density gives ∂tσ = ∂t

∑
qS =

−
∑

v · q∇S = −∇ ·
∑

vqS, i.e., the flux of
charge is the current:

∂tσ +∇ · J = 0.

Mass continuity (again).

Replacing q with m in charge density
evolution shows that mass flux coincides
with the (classical) definition of momentum:

∂tρ+∇ · (uρ) = 0 , (4)

that is (restricting to species s),
∂tρs +∇ · (usρs) = 0; dividing by ms gives
continuity of number density ns = ρs/ms for
species s:

∂t ns +∇ · (usns) = 0 .

Vlasov equation [aside].
The Vlasov equation is
simply the continuity
equation in six-dimensional
phase-space. To see this:

Use X = (x, v) to
denote a point in
phase space.

Use V = Ẋ = (v, a)
to denote velocity in
phase space.

Write the particle
distribution function
(for a species of
particles) as the sum
of particle shape
functions:
f =
∑

pSp.

Observe that V(X),
i.e. the fluid is “cold.”

Assume that the
shape of a particle in
phase space is a delta
function (unit spike):
Sp(X) = δ(X− Xp).

Then the continuity equation
∂t ns +∇ · (usns) = 0
becomes the Vlasov equation
∂t fs +∇X · (Vsfs) = 0, i.e.,

∂t f +∇x· (vf ) +∇v· (af ) .

In gory detail:

−∂t f = −
∑

p∂tSp

=
∑

pVp ·∇XSp

= ∇X ·
∑

pVpSp

= ∇X ·
∑

pV(Xp)δ(X− Xp)

= ∇X ·
∑

pV(X)δ(X− Xp)

= ∇X·
(

V(X)
∑

pδ(X− Xp)
)

= ∇X · (V(X)f )

= ∇x · (vf ) +∇v · (af )

= v ·∇xf + a ·∇vf ,

where the last step follows
from the incompressibility
condition∇v · a = 0.
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Taking moments: momentum density evolution

Given definitions:

u := 〈v〉 (bulk velocity)

c := v− u (thermal velocity)

M := ρu (momentum)

R :=
∑

rmS (collisional drag)

P := ρ〈cc〉 (pressure tensor)

p := 1
3ρ〈|c|

2〉 (pressure)

P◦ := P− p I
(deviatoric pressure)

δs
tα := ∂tα+∇ · (usα)
(“transport derivative” for us).

Remarks:
If restricting to species s, then
denote quantities as us, Rs, etc.

Including all particles, the drag
force cancels: R =

∑
s Rs = 0.

P◦ = 0 if the distribution of
particle velocities is isotropic
(the same in all directions).

Momentum balance (χ = v):
Recall generic moment evolution (Eqn. (3)):

δt (〈ρχ〉) +∇x · (ρ〈cχ〉) = ρ〈a ·∇vχ〉

Observe that 〈c〉 = 0 (since c = v− u and 〈v〉 = u). So
〈vv〉 = 〈(u + c)(u + c)〉 = uu + u〈c〉+ 〈c〉u + 〈cc〉.
That is, 〈vv〉 = uu + P. Thus, since ∇v · v = I,

δt (ρu) +∇ ·P = ρ〈a〉.

But 〈a〉 = q
m (E + u× B). Thus:

δt (ρu) +∇ ·P = σE + J× B + R . (5)

Kinetic energy balance for species s equals
momentum balance dot u:

δs
t (ρs

1
2 |us|2) + us · (∇ ·Ps) = Js ·E + Rs ·us
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Taking moments: energy

Given definitions:

E := ρ〈 1
2 v2〉 (energy density)

P := ρ〈cc〉 (pressure tensor)

q := ρ〈 1
2 c|c|2〉 (heat flux)

Q :=
∑

r · c (collisional heating)

Relationships:
energy = kinetic plus thermal:
〈|v|2〉 = |u|2 + 〈|c|2〉, i.e.,
ρ〈 1

2 |v|
2〉 = ρ 1

2 |u|
2 + ρ〈 1

2 |c|
2〉.

pressure is 2
3 the thermal energy:

p := 1
3ρ〈|c|

2〉, so E = 1
2ρ|u|

2 + 3
2 p.

Remarks:
If restricting to species s, write e.g.
Qs.

Including all particles, collisional
energy production cancels:∑

r · vmS = 0, i.e.,
R ·u + Q =

∑
s(Rs ·us + Qs) = 0

q = 0 if the distribution of particle
velocities is symmetric.

Energy balance (χ = 1
2 |v|

2):

Recall generic moment evolution (Eqn. (3)):

ρdt 〈χ〉+∇x · (ρ〈cχ〉) = ρ〈a ·∇vχ〉

For χ = 1
2 v · v, using that:

ρ〈 1
2 cv · v〉 = ρ〈cc〉 · u + ρ〈 1

2 cc · c〉 = P · u + q,
ρ〈a · v〉 = ρ〈 q

m E · v〉 = E · q
m ρu = E · J

(that is, 〈a · v〉 = 〈a〉 · 〈v〉), and∑
r · vmS =

∑
r · umS +

∑
r · cmS = R · u + Q,

δtE +∇ · (P ·u + q) = J ·E + R ·u + Q (6)

Thermal energy balance for species s:

Recall kinetic energy balance:

δs
t (ρs

1
2 |us|2) + us · (∇ ·Ps) = Js ·E + Rs ·us

Thermal energy balance equals energy balance
minus kinetic energy balance:

δs
t (ρs〈 1

2 |cs|2〉) + Ps :∇us +∇ ·qs = Qs
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Conserved moment evolution

Full fluid equations (one species):
Gathering together equations (4), (5), and (6) and re-
stricting to species s, we have a system of balance
laws for the mass(1) + momentum(3) + energy(1) = 5
conserved moments:

δs
tρs = 0

δs
t (ρsus) +∇ ·Ps = σsE + Js × B + Rs

δs
tEs +∇ · (Ps ·us + qs) = Js ·E + Rs ·us + Qs

(7)
MHD fluid equations:

The bulk fluid quantities of
MHD are defined by

ρ := ρi + ρe,

ρu := ρiui + ρeue,

E := Ei + Ee.

One-fluid MHD assumes
that the fluid velocity is the
same for all species: ui ≈
ue. In this case, summing

each equation in System
(7) over ions (s = i) and
electrons (s = e) gives the
MHD equations, which are
exactly the same but with-
out the subscript s. The in-
terspecies collision terms
involving Rs and Qs cancel
and disappear by the con-
servation laws (1).

Remarks

System (7) is in the form

δt U +∇ · F̃ = S, i.e.,

∂t U +∇ · (uU + F̃) = S,

which is in the balance form

∂t U +∇ ·F = S.

One-fluid MHD assumes ui ≈ ue,
which holds in the limit e→∞. To
see this, look at the charge
density σ = e(ni − ne) and current
density J = e(uini − uene). As
e→∞, J and σ approach finite
limiting values (because
µ0σ = c−2∇ ·E and
µ0J = ∇× B− c−2∂t E). Since
σ/e→ 0 and J/e→ 0, in the limit
e→∞, ni = ne and thus ui = ue.
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Two-fluid moment system with closure

The pressure tensor is usually separated out into its scalar part ps = 1
3 trPs (where trP := P11 +

P22 +P33 is called the trace of the matrix P) and its deviatoric (traceless) part P◦s := Ps− psI. Since
Ps = psI + P◦s , ∇ ·Ps = ∇ps +∇ ·P◦s . So more conventionally, system (7) would be written:

∂tρs +∇ · (usρs) = 0
∂t(ρsus) +∇ · (ρsusus) +∇ps +∇ ·P◦s = σsE + Js × B + Rs

∂tEs +∇· ((Es + ps)us + P◦s ·us + qs) = Js ·E + Rs ·us + Qs

(8)

The system (8) agrees exactly with the kinetic
equation. The only problem is that it is not
closed: the red terms are unkown unless we
make an assumption about the particle distri-
bution. Fluid closures assume that intraspecies
collisions are fast enough to keep the distribu-
tion close to Maxwellian. If the distribution is
Maxwellian then the red quantities, deviatoric
pressure P◦s and heat flux qs, will be zero. The
blue terms require an interspecies collision as-
sumption. We assume that the drag force is pro-

portional to the interspecies drift velocity:

−Ri = Re = e2neniη · (ui − ue), , (9)

where η is a proportionality constant called the
resistivity and we have used that Ri + Re = 0.

Since 0 = Ri ·ui + Qi + Re ·ue + Qe, the total
heating Q := Qi + Qe (caused by resistive drag)
is Q = −

∑
Rs ·us ≈ J ·η · J, and for simplic-

ity we can assume that resistive heating is allo-
cated among the species in inverse proportion
to the mass of each species.
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MHD bulk fluid moments

Magnetohydrodynamics (MHD)
regards the plasma as a single fluid
and evolves total mass, momentum,
and energy densities. The bulk fluid
quantities of MHD are thus defined
by summing over all species:

ρ := ρi + ρe,

ρu := ρiui + ρeue,

E := Ei + Ee.

To obtain a closed system, MHD
models impose two fundamental
simplifying assumptions:

1 quasineutrality: ni = ne =: n
(or more generally, σ/e→ 0).

2 Ohm’s law: E = B× u + . . ..

Ohm’s law replaces electric field
evolution and thus eliminates light
waves from the system.

The divergence constraint ∇ ·E = µ0c2e(ni − ne) says
that quasineutrality is justified if c →∞ (classical, two-fluid
MHD) or if e→∞ (one-fluid, possibly relativistic MHD).

One-fluid MHD additionally assumes that all species have
approximately the same fluid velocity:

ui ≈ ue ;

this assumption is enforced as e→∞ both by the strong
electrical current J = e(ui ni − uene) and by the strong
resistive drag Re = e2neniη · (ui − ue) = −Ri that would
otherwise result.

With this simplifying assumption, summing the system (8)
over all species gives:

∂tρ+∇ · (uρ) = 0

∂t (ρu) +∇ · (ρuu) +∇p +∇ ·P◦ = σE + J× B
∂tE +∇· ((E + p)u + P◦ ·u + q) = J ·E

(10)
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MHD: Ohm’s law

Recall from page 18 the momentum evolution equation (5). For electrons it
says:

δt(ρeue) +∇ ·Pe = σe(E + ue × B) + Re.

In the limit e → ∞, the electron charge density σe = −ene becomes infinite.
Assuming that the left side remains finite, dividing by σe makes the left side
zero. Solving for E,

E = B× ue +
Re

σe
.

In the MHD limit ni ≈ ne =: n, so the current is J = en(ui − ue) and the drag
closure (9) becomes Re = enη ·J, i.e., Re

σe
= −η ·J. So Ohm’s law says:

E =B× u (ideal term)
+ η ·J (resistive term).
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Classical MHD

In the classical limit, c →∞. This yields two important simplifications:
1 Charge neutrality:

σ = 0.

Indeed, the divergence constraint µ0σ = c−2∇ ·E implies that σ ≈ 0.
2 Ampere’s law:

J = µ−1
0 ∇× B.

Indeed, the displacement current ∂tE disappears in Maxwell-Ampere:

µ0J := ∇× B− c−2∂tE.

Putting it all together, we have. . .
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Classical Resistive MHD

MHD system:

∂tρ+∇ · (ρu) = 0 (mass continuity),

ρdtu +∇p +∇·P◦ = J× B (momentum balance),

δtE+∇·(up + u ·P◦+q) = J ·E (energy balance),

∂tB +∇× E = 0 (magnetic field evolution).

The divergence constraint ∇ ·B = 0 is maintained by exact
solutions and must be maintained in numerical solutions.

Electromagnetic closing relations:

J := µ−1
0 ∇× B (Ampere’s law for current)

E ≈ B× u + η ·J (Ohm’s law for electric field)

In a reference frame moving with the fluid, B remains un-
changed but the electric field becomes E′ = E + u×B =
η · J. So Ohm’s law says that, in the reference frame of
the fluid, the electric field is proportional to current (i.e.
to the drift velocity of the electrons). In other words, the
electric field balances the resistive drag force.

Fluid closure:

p = 2
3 (E −

1
2ρ|u|

2),

P◦ ≈ −2µ : ((∇u)◦),
q ≈ −k ·∇T ;

(∇u)◦ := 1
2 (∇u + (∇u)T )− 1

3∇ · u
is the deviatoric strain rate.

Closure tensors: We will neglect the
viscosity µ and heat conductivity k. In
the presence of a strong magnetic
field, µ and k are tensors, not scalars.
In a tokamak, heat conductivity
perpendicular to the magnetic field can
be a million times weaker than parallel
to the magnetic field, helping to confine
heat. The reason is that particles spiral
tightly around magnetic field lines and
so easily drift along field lines. On the
other hand, even when the magnetic
field is strong, it is safe to assume that
the resistivity η is a scalar (i.e.,
η = ηI) and we will make this
simplification.
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Thermal energy evolution in MHD

To obtain a thermal energy evolution equation for
MHD, we imitate the procedure for gas dynamics by
subtracting kinetic energy evolution from total gas
dynamic energy evolution.

Recall momentum balance:

ρdt u +∇p +∇ ·P◦ = J× B.

Kinetic energy balance is u dot momentum balance:

1
2ρdt |u|2 + u ·∇p + u · (∇ ·P◦) = u · (J× B).

Recall total gas-dyanamic energy balance:

δtE +∇ · (up + u ·P◦ + q) = J ·E.

Subtracting kinetic energy balance from this yields
thermal energy balance:

δt (
3
2 p) + p∇ ·u + P◦ :∇u +∇ ·q = J ·E′ ,

where we have used that thermal energy
is 3

2 the pressure, i.e., E = 3
2 p + 1

2ρ|u|
2,

and where E′ := E + u×B is the electric
field in the reference frame of the fluid.

For resistive MHD,

E′ = η · J.

Recall that

δt p = ∂t p +∇ · (up) = dt p + p∇ ·u,

so

3
2 δt p + p∇ ·u = 3

2 dt p + 5
2 p∇ ·u.

Assuming that P◦ = 0 and q = 0,
pressure evolution becomes

dt p + γ∇ ·u = 2
3η · J.

where γ := 5
3 is the adiabatic index.
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Conservation form of MHD

A fundamental
principle of physics is
that total momentum
and energy are
conserved. This
means that we
should be able to put
e.g. the momentum
evolution equation in
conservation form
∂t Q +∇ ·F = 0.

To put momentum evolution
in conservation form, we write
the source term as a
divergence using Ampere’s
law, vector calculus, and
∇ ·B = 0:

−µ0J× B = µ0B× J
= B×∇× B
= (∇B) ·B− B ·∇B

= ∇(B2/2)−∇ · (BB)

= ∇ · (IB2/2− BB).

To put energy evolution in conservation
form, we write the source term as a
time-derivative plus a divergence, using
Ampere’s law, the identity
∇ · (E× B) = B ·∇× E− E ·∇× B,
and Faraday’s law:

−µ0E · J
= −E ·∇× B
= ∇ · (E× B)− B ·∇× E
= ∇ · (E× B) + B · ∂t B

= ∇ · (E× B) + ∂t (B2/2).

So MHD in conservation form reads

∂tρ+∇ · (ρu) = 0 (mass continuity),

ρdt u +∇ ·
(
I
(
p + B2

2µ0

)
+ µ−1

0 BB + P◦
)

= 0, (momentum conservation),

∂t
(
E + B2

2µ0

)
+∇·

(
u(E+p) + u ·P◦ + q + µ−1

0 E× B
)

= 0, (energy conservation),

∂t B +∇× E = 0 (magnetic field evolution),

where we now recognize pB := B2

2µ0
as both the pressure and the energy of the magnetic field.

Johnson (KU Leuven) Fluid models Nov 28, 2013 28 / 30



Notes on tensors

An nth order tensor has n
subscripts each of which
runs from 1 to 3. For
example, Pij = ρ〈ci cj 〉 is a
second-order tensor (i.e. a
3× 3 matrix).

The tensor project of an
nth order tensor A and an
mth order tensor B is an
(n + m)th order tensor
AB = A⊗ B, where
(AB)i1...in j1...jm =
Ai1...in Bj1...jm . For example,

(uP)ijk := uiPjk .

The unique second-order
tensor that is invariant under
rotation of coordinates is the
Kronecker delta:

δij =

{
1 if i = j
0 otherwise

The unique third-order tensor that
remain unchanged under rotation of
coordinates is the Levi-Civita symbol:

1 = ε123 = ε231 = ε312,

−1 = ε213 = ε321 = ε132, and

0 = εijk if i = j or j = k or i = k .

The Einstein summation
convention says that there is an
implied sum over a repeated index in
a term. A non-summed index is called
a free index. For example, the cross
product is defined by
(u× v)i = εijk uj vk , where i is the free
index.

The dot product of two
tensors is the tensor
product contracted
(summed) over adjacent
indices. E.g. u · v = ui vi
and (u ·P)i = ujPji .

The trace of a tensor is its
contraction over its first
two indices: trP = Pii and
u · v = tr(uv).

The transpose of a matrix
is defined by MT

ij = Mji .

A symmetric matrix M
(such as the pressure
tensor P) satisfies
MT = M.
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