Multiscale simulation of waves in plasmas

E. Alec Johnson
Department of Mathematics, UW-Madison
Presented on June 10 at Hyp2008

(C)2003, Kenneth Lang, Tufts University

Outline

(1) Motivation: model space weather and fast reconnection
(2) Problem: efficient plasma simulation for multiple scales
(3) Strategy: domain decomposition
(4) 1-D simulations

Physical motivation: Space weather

Broad goal: to model space weather.

- Earth bombarded with solar wind.
- Solar wind is generally deflected by Earth's magnetic field.
- Reconnection of magnetic field lines allows plasma to enter the region occupied by Earth's magnetic field lines and propagate to Earth's poles.

From Continuous magnetic reconnection at Earth's magnetopause,
H. U. Frey, T. D. Phan, S. A. Fuselier and S. B. Mende,

Critical phenomenon: fast magnetic reconnection
Fast reconnection provides the mechanism that allows solar storms to trigger violent geomagnetic storms.

http://www.aldebaran.cz/astrofyzika/plazma/reconnection_en.html
Our project is to develop an efficient algorithm that resolves fast magnetic reconnection.

Simulating fast reconnection: a multiscale problem

Fast reconnection makes space plasma simulation a multiscale problem.
(1) Finest model: Collisionless Kinetic (PIC: particle-in-cell)

- computationally expensive; PIC is noisy
- admits fast reconnection and gets right structure of reconnection region
(2) Fine model: ideal 2-fluid
- computationally expensive
- admits fast reconnection
- agrees with collisionless PIC for low plasma β.
(3) Coarse model: MHD (magnetohydrodynamics)
- computationally cheap
- adequate for most of the domain
- ideal MHD does not admit reconnection
- resistive MHD does not admit fast reconnection

Strategy: domain-decomposition

We want to develop a domain-decomposition multiscale algorithm which uses a kinetic model in small regions where reconnection is occurring and elsewhere uses MHD.

Why stitching models is a good idea:

- 2-fluid converges to MHD as gyroradius goes to zero
- ratio of explicit 2-fluid/PIC to MHD cost increases with inverse square of nondimensionalized gyroradius

Strategy for a stitched model

Framework of the domain-decomposition ("stitching") model we are working towards:

- use MHD solver over the global domain
- use embedded microscale (2-fluid/PIC) solver in regions where conditions are hospitable to fast reconnection

How data exchange should work:

- MHD provides microscale solver with boundary data
- microscale 2-fluid provides MHD with corrected values in overlap region.
- stitch smoothly at the boundary between models using a "sponge layer"

Model state variables
Exchanging data requires specifying the state variables of each model (and the maps between them.)

MHD state variables:

$$
\left(\begin{array}{c}
\rho \\
\rho \mathbf{u} \\
\mathcal{E} \\
\mathbf{B}
\end{array}\right)=\left(\begin{array}{c}
\text { mass } \\
\text { momentum } \\
\text { energy } \\
\text { magnetic field }
\end{array}\right)
$$

PIC state variables:

$$
\left(\begin{array}{c}
\mathbf{B} \\
\mathbf{E} \\
\left(\mathbf{x}_{p}\right)_{p=1}^{N} \\
\left(\mathbf{v}_{p}\right)_{p=1}^{N}
\end{array}\right)=\left(\begin{array}{c}
\text { electric field } \\
\text { magnetic field } \\
\text { particle positions } \\
\text { particle velocities }
\end{array}\right)
$$

2-fluid state variables:

$$
\left(\begin{array}{c}
\rho_{i} \\
\rho_{i} \mathbf{u}_{i} \\
\mathcal{E}_{i} \\
\rho_{e} \\
\rho_{e} \mathbf{u}_{e} \\
\mathcal{E}_{e} \\
\mathbf{B} \\
\mathbf{E}
\end{array}\right)=\left(\begin{array}{c}
\text { ion mass } \\
\text { ion momentum } \\
\text { ion energy } \\
\text { electron mass } \\
\text { electron momentum } \\
\text { electron energy } \\
\text { magnetic field } \\
\text { electric field }
\end{array}\right)
$$

Mapping between micro and macro states

- Mapping from micro to macro states is called compression.
- Mapping from macro to micro states is called reconstruction.
- Compression: typically involves straightforward summing or averaging
- Reconstruction: the inverse mapping is nonunique, so reconstruction requires additional assumptions or information to pick out a solution.

Mapping from 2-fluid to MHD states

A natural mapping from MHD to 2fluid states (compression) is:

$$
\begin{aligned}
& \rho=\rho_{i}+\rho_{e} \\
& \rho \mathbf{u}=\rho_{i} \mathbf{u}_{i}+\rho_{e} \mathbf{u}_{e} \\
& \mathcal{E}=\mathcal{E}_{i}+\mathcal{E}_{e} \\
& \mathbf{B}=\mathbf{B}
\end{aligned}
$$

(This regards species drift velocity as part of the thermal energy in MHD.)

However, to avoid the danger of computing negative pressures, we abandon energy conservation and instead sum pressure (i.e. thermal energy):

$$
\begin{aligned}
& \rho=\rho_{i}+\rho_{e} \\
& \rho \mathbf{u}=\rho_{i} \mathbf{u}_{i}+\rho_{e} \mathbf{u}_{e} \\
& p=p_{i}+p_{e} \\
& \mathbf{B}=\mathbf{B}
\end{aligned}
$$

Reconstructing 2-fluid from MHD states

To invert the compression mapping we need additional information:
(1) ratio of number densities: provided by MHD assumption of quasineutrality:

$$
\rho_{i}=\frac{m_{i}}{m_{i}+m_{e}} \rho, \quad \rho_{e}=\frac{m_{e}}{m_{i}+m_{e}} \rho
$$

(2) drift velocities: provided by MHD assumptions of quasineutrality and $\partial_{t} \mathbf{E} \approx$ 0 (Ampere's law):

$$
\begin{aligned}
\mathbf{J} & =\mu_{0}^{-1} \nabla \times \mathbf{B}, \\
\mathbf{u}_{i} & =\mathbf{u}+\frac{m_{e}}{e \rho} \mathbf{J}, \quad \mathbf{u}_{e}=\mathbf{u}-\frac{m_{i}}{e \rho} \mathbf{J} .
\end{aligned}
$$

(3) ratio of thermal energies: used to split thermal energy (typically we split pressure instead to avoid negative pressures):

$$
p_{i}=\frac{T_{i}}{T_{i}+T_{e}} p, \quad p_{e}=\frac{T_{e}}{T_{i}+T_{e}} p
$$

Mapping between kinetic and 2-fluid states
(1) Compression mapping from kinetic to 2 -fluid states:

- compute statistical moments for each cell to get values of mass, momentum, and pressure or energy.
(2) Reconstruction of particles from moments:
- uses moments and assumed form of distribution of velocities (e.g. Maxwellian)
- needed when creating particles for an initial state or injecting particles at model boundaries.

Equations: Vlasov

We take the Vlasov equation as the true description of a collisionless plasma. It says that the particle density of each species is conserved in phase space.

$$
\partial_{t} f_{s}+\nabla_{\mathbf{x}} \cdot\left(\mathbf{v} f_{s}\right)+\nabla_{\mathbf{v}} \cdot\left(\frac{q_{s}}{m_{s}}(\mathbf{E}+\mathbf{v} \times \mathbf{B}) f_{s}\right)=0
$$

Here s is a species index, $f_{s}(t, \mathbf{x}, \mathbf{v})$ is particle density as a function of the independent variables.

Equations: kinetic

The equations of the kinetic model are Maxwell's equations and the Lorentz force to govern particle motion:

$$
\begin{array}{lr}
\partial_{t} \mathbf{B}=-\nabla \times E, & \nabla \cdot \mathbf{B}=0, \\
\partial_{t} \mathbf{E}=c^{2} \nabla \times B-\mathbf{J} / \epsilon, & \nabla \cdot \mathbf{E}=\sigma, \\
\partial_{t}\left(\gamma \mathbf{v}_{p}\right)=\frac{1}{r} \frac{q_{p}}{m_{p}}\left(\mathbf{E}\left(\mathbf{x}_{p}\right)+\mathbf{v}_{p} \times \mathbf{B}\left(\mathbf{x}_{p}\right)\right), & \partial_{t} \mathbf{x}_{p}=\mathbf{v}_{p}, \\
\mathbf{J}=\sum_{p} q_{p} \mathbf{v}_{p} S, &
\end{array}
$$

where p denotes particle index and S denotes the spatial charge distribution of a single particle (e.g. an impulse function). (In the nondimensionalization r is the nondimensionalized gyroradius of a typical ion.)

Equations: 2-fluid

The equations of the ideal 2-fluid model are Maxwell's equations coupled to the ideal gas equations for each species (with no direct coupling between species):

$$
\begin{aligned}
& \partial_{t}\left[\begin{array}{c}
\rho_{i} \\
\rho_{e} \\
\rho_{i} \mathbf{u}_{i} \\
\rho_{e} \mathbf{u}_{e} \\
\mathcal{E}_{i} \\
\mathcal{E}_{e}
\end{array}\right]+\nabla \cdot\left[\begin{array}{c}
\rho_{i} \mathbf{u}_{i} \\
\rho_{e} \mathbf{u}_{e} \\
\rho_{i} \mathbf{u}_{i} \mathbf{u}_{i}+p_{i} \mathbb{I} \\
\rho_{e} \mathbf{u}_{e} \mathbf{u}_{e}+p_{e} \mathbb{I}_{e} \\
\mathbf{u}_{i} \mathcal{E}_{i}+\mathbf{u}_{i} p_{i} \\
\mathbf{u}_{e} \mathcal{E}_{e}+\mathbf{u}_{e} p_{e}
\end{array}\right]=\frac{1}{r}\left[\begin{array}{c}
0 \\
0 \\
\sigma_{i} \mathbf{E}+\mathbf{J}_{i} \times \mathbf{B} \\
\sigma_{e} \mathbf{E}+\mathbf{J}_{e} \times \mathbf{B} \\
\mathbf{J}_{i} \cdot \mathbf{E} \\
\mathbf{J}_{e} \cdot \mathbf{E}
\end{array}\right] \\
& \partial_{t} \mathbf{B}+\nabla \times \mathbf{E} \quad=\quad 0, \quad \nabla \cdot \mathbf{B}=0, \\
& \partial_{t} \mathbf{E}-c^{2} \nabla \times \mathbf{B}=-\mathbf{J} / \epsilon, \quad \nabla \cdot \mathbf{E}=\sigma / \epsilon .
\end{aligned}
$$

Here $r:=\frac{v_{0} m_{0}}{x_{0} q_{0} B_{0}}=r_{L} / x_{0}$ is a nondimensionalized gyroradius and $\epsilon=\frac{\epsilon_{0} v_{0} B_{0}}{q_{0} n_{0} x_{0}}$ is a fake permittivity; we can write $\epsilon=r \lambda^{2}$, where $\lambda^{2}:=\frac{\epsilon_{0} B_{0} v_{0}}{q_{0} n_{0} x_{0}}$ defines the ratio of the Debye length $\lambda_{D}:=\sqrt{\left(\frac{\epsilon_{0} m_{0} v_{0}^{2}}{n_{0} q_{0}^{2}}\right)}$ to the gyroradius.

Equations: MHD

The equations of ideal MHD in conservative form are

$$
\partial_{t}\left[\begin{array}{c}
\rho \\
\rho \mathbf{u} \\
\tilde{\mathcal{E}} \\
\mathbf{B}
\end{array}\right]+\nabla \cdot\left[\begin{array}{c}
\rho \mathbf{u} \\
\rho \mathbf{u u}+\mathbb{I} \tilde{p}_{\mathrm{MHD}}-\mu_{0}^{-1}(\mathbf{B B}) \\
\mathbf{u}\left(\tilde{\mathcal{E}}+\tilde{p}_{\mathrm{MHD}}\right)-\mu_{0}^{-1} \mathbf{B B} \cdot \mathbf{u} \\
\mathbf{u B}-\mathbf{B u}
\end{array}\right]=0,
$$

where $\tilde{\mathcal{E}}=\mathcal{E}+\mu_{0}^{-1} B^{2} / 2$ is total energy, where $\mathcal{E}=(3 / 2) p_{\mathrm{MHD}}+(1 / 2) \rho u^{2}$ is MHD gas energy, and $\tilde{p}_{\text {MHD }}=p_{\text {MHD }}+\mu_{0}^{-1} B^{2} / 2$ is total pressure.

Numerical schemes

We have implemented second-order-accurate time-splitting finite-volume schemes that maintain Maxwell's divergence constraints for each of the three models. The MHD and 2-fluid schemes are conservative and apply shockcapturing limiters.

Numerical PIC scheme

Our PIC scheme uses staggering in time and space to achieve second-order accuracy and maintain the divergence constraints. Our scheme is:

$$
\left(\partial_{t} \mathbf{E}\right)^{m+1 / 2}=c^{2}(\nabla \times B)^{m+1 / 2}-\mathbf{J}^{n+1 / 2} / \epsilon
$$

implicit case: $\left(\partial_{t} \mathbf{B}\right)^{m+1 / 2}=-(\nabla \times E)^{m+1 / 2}$
explicit case: $\left(\partial_{t} \mathbf{B}\right)^{m+1}=-(\nabla \times E)^{m+1}$

$$
\begin{aligned}
\left(\partial_{t}(\gamma \mathbf{v})_{p}\right)^{n} & =\frac{1}{r} \frac{q_{p}}{m_{p}}\left(\mathbf{E}^{n}\left(\mathbf{x}_{p}^{n}\right)+\frac{\mathbf{v}_{p}^{n+1 / 2}+\mathbf{v}_{p}^{n-1 / 2}}{2} \times \mathbf{B}^{n}\left(\mathbf{x}_{p}^{n}\right)\right) \\
\left(\partial_{t} \mathbf{x}_{p}\right)^{n+1 / 2} & =\mathbf{v}_{p}^{n+1 / 2}, \quad \mathbf{J}^{n+1 / 2}=\sum_{p} q_{p} \mathbf{v}_{p}^{n+1 / 2} S
\end{aligned}
$$

For second-order accuracy we chose the particle shape S to be the size of a mesh cell.
The discrete differential operators denote second-order centered difference operators in time and space. The spatial staggering (Yee scheme) centers vector components on the cell faces to which they are perpendicular and centers components of pseudovectors (e.g. B) along cell edges. Taking the discrete divergence of the electromagnetic evolution equations shows that $\nabla \cdot \mathbf{B}=0$ is maintained and that $(\nabla \cdot \mathbf{E})^{n}=\sigma^{n} / \epsilon$ is maintained if we enforce that current is charge flux, i.e., $\left(\partial_{t} \sigma\right)^{n+1 / 2}+\mathbf{J}^{n+1 / 2}=0$.

Numerical MHD scheme

The ideal MHD system is hyperbolic, so we used a finite-volume shock-capturing method based on the eigenstructure of the flux jacobian.

Remark: It is easier to find the eigenstructure for primitive variables and then transform to conserved variables. The 1-D MHD equations in primitive variables and quasilinear form are:

$$
\left(\begin{array}{c}
\rho \\
u_{1} \\
u_{2} \\
u_{3} \\
p \\
B_{2} \\
B_{3}
\end{array}\right)_{t}+\left[\begin{array}{ccccccc}
u_{1} & \rho & 0 & 0 & 0 & 0 & 0 \\
0 & u_{1} & 0 & 0 & \frac{1}{\mu_{0} \rho} & \frac{B_{2}}{\mu_{0} \rho} & \frac{B_{3}}{\mu_{0} \rho} \\
0 & 0 & u_{1} & 0 & 0 & \frac{-B_{1}}{\mu_{0} \rho} & 0 \\
0 & 0 & 0 & u_{1} & 0 & 0 & \frac{-B_{1}}{\mu_{0} \rho} \\
0 & \gamma p & 0 & 0 & u_{1} & 0 & 0 \\
0 & B_{2} & -B_{1} & 0 & 0 & u_{1} & 0 \\
0 & B_{3} & 0 & -B_{1} & 0 & 0 & u_{1}
\end{array}\right] \cdot\left(\begin{array}{c}
\rho \\
u_{1} \\
u_{2} \\
u_{3} \\
p \\
B_{2} \\
B_{3}
\end{array}\right)_{x}=0
$$

Numerical 2-fluid scheme

For the two-fluid solver, we used time-splitting to decouple the hyperbolic flux from the (nondifferentiated) source term. We used a finite-volume shockcapturing method for the hyperbolic flux and RK4 for the source term ODE.

Preliminary studies

The need to design a stitched model has prompted us to carry out some preliminary studies.

- need to show that waves are transmitted smoothly across the stitching layer between model boundaries
- need to study convergence of microscale model to macroscale model to determine where to use the macroscale versus microscale model.

1D convergence studies
We have done 1D convergence studies for the
(1) MHD,
(2) 2-fluid, and
(3) PIC
models for the following problems:

- Brio-Wu shock problem
- polarized Alfvèn waves
- Magnetosonic waves

Brio-Wu shock problem results

- For a large light speed, as gyroradius goes to zero, the 2-fluid simulation seem to weakly converge to a limit that is close to the 1-fluid simulation.
- PIC simulations show rough agreement with 2-fluid simulations as we increase the number of particles

Computations: Brio-Wu shock problem

We computed solutions to the Brio-Wu 1-dimensional shock problem [?].

Initial conditions for ion density:
discontinuity at zero, elsewhere constant.

Computations: Brio-Wu shock problem

For MHD the Brio-Wu initial conditions to the left and right of zero are:

$$
\left[\begin{array}{c}
\rho \\
v^{1} \\
v^{2} \\
v^{3} \\
p \\
B^{1} \\
B^{2} \\
B^{3}
\end{array}\right]_{\text {left }}\left[\begin{array}{c}
1.0 \\
0 \\
0 \\
0 \\
1.0 \\
0.75 \\
1.0 \\
0
\end{array}\right] \text { and }\left[\begin{array}{c}
\rho \\
v^{1} \\
v^{2} \\
v^{3} \\
p \\
B^{1} \\
B^{2} \\
B^{3}
\end{array}\right]_{\text {right }}=\left[\begin{array}{c}
0.125 \\
0 \\
0 \\
0 \\
0.1 \\
0.75 \\
-1.0 \\
0
\end{array}\right]
$$

The are:

$$
\left[\begin{array}{c}
\rho_{i} \\
v_{i}^{1} \\
v_{i}^{2} \\
v_{i}^{3} \\
p_{i} \\
\rho_{e} \\
v_{e}^{1} \\
v_{e}^{2} \\
v_{e}^{3} \\
p_{e} \\
B^{1} \\
B^{2} \\
B^{3} \\
E^{1} \\
E^{2} \\
E^{3}
\end{array}\right]_{\text {left }}\left[\begin{array}{c}
1.0 \\
0 \\
0 \\
0 \\
0.5 \\
1.0 \frac{m_{e}}{m_{i}} \\
0 \\
0 \\
0 \\
0.5 \\
0.75 \\
1.0 \\
0 \\
0 \\
0 \\
0
\end{array}\right] \text { and }\left[\begin{array}{c}
\rho_{i} \\
v_{i}^{1} \\
v_{i}^{2} \\
v_{i}^{3} \\
p_{i} \\
\rho_{e} \\
v_{e}^{1} \\
v_{e}^{2} \\
v_{e}^{3} \\
p_{e} \\
B^{1} \\
B^{2} \\
B^{3} \\
E^{1} \\
E^{2} \\
E^{3}
\end{array}\right]_{\text {right }}=\left[\begin{array}{c}
0.125 \\
0 \\
0 \\
0 \\
0.05 \\
0.125 \frac{m_{e}}{m_{i}} \\
0 \\
0 \\
0 \\
0.05 \\
0.75 \\
-1.0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Computations

We plotted ion density at nondimensionalized time $t=0.1$ for a range of values of the nondimensionalized Larmor radius:

- $r_{L}=\infty$ (an Euler gas dynamics computation),
- $r_{L}=10,1,0.1,0.01,0.003$ (two-fluid computations), and
- $r_{L}=0$ (an ideal MHD computation).

Results:

- As $r_{L} \rightarrow 0$, the solution seems to weakly approach the MHD solution.
- For smaller values of r_{L} computation becomes prohibitively expensive as we need a finer computational grid to prevent negative pressures or densities from crashing the code and to get convergence.
- For intermediate values of r_{L}, the computational domain needs to be extended the most due to substantial fast-moving oscillations.

Computations (cell-centered), $r_{L}=10$

When the Larmor radius is large ($r_{L}=10$), the electromagnetic effects are weak and the ions behave like an ideal gas. (At $r_{L}=100,2$-fluid is indistinguishable from Euler.)

Computations (cell-centered), $r_{L}=1$

As we decrease the Larmor radius, the solution begins to transition away from gas dynamics (and eventually toward MHD).

Computations (cell-centered), $r_{L}=0.1$

When $t \approx r_{L}$, the solution is roughly intermediate between Euler and MHD.

Computations (cell-centered), $r_{L}=0.01$
ion density at time $t=0.1$ for $r_{L}=0.01$

As the Larmor radius becomes even smaller, the frequency of the oscillations increases and the solution begins to weakly approach the MHD solution.

Computations (cell-centered), $r_{L}=0.003$
ion density at time $t=0.1$ for $r_{L}=0.003$

Convergence to MHD is suggested but far from confirmed. Unfortunately, computational expense increases with decreasing Larmor radius.

Computations with Yee scheme

Results:

- For large Larmor radius the Yee scheme was indistinguishable from the cell-centered scheme.
- For intermediate values of Larmor radius ($r_{L}=t=0.1$), the Yee scheme is less accurate for a coarse mesh but more accurate for a fine mesh.
- For small Larmor radius the Yee scheme required a prohibitively small mesh size to prevent negative or vanishing densities.
- Suggested conclusion: Use the cell-centered scheme for a large mesh and switch to the Yee scheme for a sufficiently fine mesh.

Computations, cell-centered, $r_{L}=0.1$

(Cell-centered computation for comparison with Yee scheme.)

Computations: Comparison with Yee scheme, $r_{L}=0.1$

The plot of the Yee scheme is indistinguishable from the unstaggered scheme except in the squiggly area near the right end of the slow compound wave of MHD and the peak in the rarefaction wave of MHD.

Computations: Comparison with Yee scheme, $r_{L}=0.1$
Close-up near MHD compound wave.

The Yee scheme converges much more rapidly in this region of high oscillation near the right end of the slow compound wave of MHD (compare the highly resolved solution in Fig. 4 of [?]).

Computations: Comparison with Yee scheme, $r_{L}=0.1$
Close-up near MHD fast rarefaction wave.
ion density at time $t=0.1$ for $r_{L}=0.1$

Here at the peak in the MHD rarefaction wave region, the Yee scheme performs more poorly at coarse resolution, but better at fine resolution (compare the highly resolved peak in Fig. 3 of [?]).

Computations: Brio-Wu ICs, $(t=0)$

Pressure at time $t=($

$B 3(x, t)$ at time $t=($

The initial conditions of the Brio-Wu problem.

Computations: Brio-Wu kinetic ICs, $(t=0)$

The initial conditions for a kinetic run of the Brio-Wu problem.

Computations: Brio-Wu 2-fluid, $r_{L}=0.1, t=.02$

$B 1(x, t)$ at time $t=0.06$

$\mathrm{u} 2(\mathrm{x}, \mathrm{t})$ at time $\mathrm{t}=0.0_{c}$

Two-fluid Brio-Wu solution

Computations: Brio-Wu kinetic, $r_{L}=0.1, t=.02$

Kinetic Brio-Wu solution

Computations: fast magnetosonic kinetic, $r_{L}=0$

$u 1(x, t)$ at time $t=$ (

$B 1(x, t)$ at time $t=$

Pressure at time $\mathrm{t}=$

$u 2(x, t)$ at time $t=($

$B 2(x, t)$ at time $t=($

u3 (x, t) at time $t=($

B3 (x, t) at time $t=$ (

Fast magnetosonic initial conditions

Computations: fast magnetosonic kinetic, $r_{L}=0.2, t=.2$

$\mathrm{u} 2(\mathrm{x}, \mathrm{t})$ at time $\mathrm{t}=0$.

$\mathrm{B} 2(\mathrm{x}, \mathrm{t})$ at time $\mathrm{t}=0.2$

$\mathrm{u} 3(\mathrm{x}, \mathrm{t})$ at time $\mathrm{t}=0 . \mathrm{c}$

Kinetic fast magnetosonic solution

Computations: fast magnetosonic 2-fluid, $r_{L}=0.2, t=.2$

$\mathrm{u} 3(\mathrm{x}, \mathrm{t})$ at time $\mathrm{t}=0 . \mathrm{c}$

2-fluid fast magnetosonic solution

Computations: fast magnetosonic MHD, $r_{L}=0.2, t=.2$

$B 1(x, t)$ at tirne $t=0.8$

MHD fast magnetosonic solution

Acknowledgements

- Wisconsin Space Grant Consortium
- My advisor, James Rossmanith
- Helpful conversations with Nick Murphy, James Drake, Ping Zhu, Andrew Christlieb, and Nick Hitchon.

