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Outline

¬ Motivation: model space weather and fast reconnection

 Problem: efficient plasma simulation for multiple scales

® Strategy: domain decomposition

¯ 1-D simulations
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Physical motivation: Space weather

Broad goal: to model space weather.

• Earth bombarded with solar wind.

• Solar wind is generally deflected by
Earth’s magnetic field.

• Reconnection of magnetic field lines
allows plasma to enter the region
occupied by Earth’s magnetic field
lines and propagate to Earth’s poles.

From Continuous magnetic reconnection at Earth’s
magnetopause,

H. U. Frey, T. D. Phan, S. A. Fuselier and S. B. Mende,

Nature 426, 533-537(4 December 2003)
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Critical phenomenon: fast magnetic reconnection

Fast reconnection provides the mechanism that allows solar storms to trigger
violent geomagnetic storms.

http://www.aldebaran.cz/astrofyzika/plazma/reconnection en.html

Our project is to develop an efficient algorithm that resolves fast magnetic
reconnection.
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Simulating fast reconnection: a multiscale problem

Fast reconnection makes space plasma simulation a multiscale problem.

¬ Finest model: Collisionless Kinetic (PIC: particle-in-cell)

• computationally expensive; PIC is noisy
• admits fast reconnection and gets right structure of reconnection region

 Fine model: ideal 2-fluid

• computationally expensive
• admits fast reconnection
• agrees with collisionless PIC for low plasma β.

® Coarse model: MHD (magnetohydrodynamics)

• computationally cheap
• adequate for most of the domain
• ideal MHD does not admit reconnection
• resistive MHD does not admit fast reconnection
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Strategy: domain-decomposition

We want to develop a domain-decomposition multiscale algorithm which uses
a kinetic model in small regions where reconnection is occurring and elsewhere
uses MHD.

Why stitching models is a good idea:

• 2-fluid converges to MHD as gyroradius goes to zero

• ratio of explicit 2-fluid/PIC to MHD cost increases with inverse square of
nondimensionalized gyroradius
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Strategy for a stitched model

Framework of the domain-decomposition (“stitching”) model we are working
towards:

• use MHD solver over the global domain

• use embedded microscale (2-fluid/PIC) solver in regions where conditions are
hospitable to fast reconnection

How data exchange should work:

• MHD provides microscale solver with boundary data

• microscale 2-fluid provides MHD with corrected values in overlap region.

• stitch smoothly at the boundary between models using a “sponge layer”
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Model state variables

Exchanging data requires specifying the state variables of each model (and the
maps between them.)

MHD state variables:
ρ
ρu
E
B

 =


mass

momentum
energy

magnetic field


PIC state variables:

B
E

(xp)Np=1

(vp)Np=1

 =


electric field

magnetic field
particle positions
particle velocities



2-fluid state variables:

ρi
ρiui
Ei
ρe
ρeue
Ee
B
E


=



ion mass
ion momentum

ion energy
electron mass

electron momentum
electron energy
magnetic field
electric field
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Mapping between micro and macro states

• Mapping from micro to macro states is called compression.

• Mapping from macro to micro states is called reconstruction.

• Compression: typically involves straightforward summing or averaging

• Reconstruction: the inverse mapping is nonunique, so reconstruction requires
additional assumptions or information to pick out a solution.
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Mapping from 2-fluid to MHD states

A natural mapping from MHD to 2-
fluid states (compression) is:

ρ = ρi + ρe

ρu = ρiui + ρeue

E = Ei + Ee
B = B

(This regards species drift velocity as
part of the thermal energy in MHD.)

However, to avoid the danger of
computing negative pressures, we
abandon energy conservation and
instead sum pressure (i.e. thermal
energy):

ρ = ρi + ρe

ρu = ρiui + ρeue

p = pi + pe

B = B
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Reconstructing 2-fluid from MHD states

To invert the compression mapping we need

additional information:

¬ ratio of number densities: provided by

MHD assumption of quasineutrality:

ρi =
mi

mi +me

ρ, ρe =
me

mi +me

ρ.

 drift velocities: provided by MHD

assumptions of quasineutrality and ∂tE ≈
0 (Ampere’s law):

J = µ
−1
0 ∇× B,

ui = u +
me

eρ
J, ue = u−

mi

eρ
J.

® ratio of thermal energies: used to split

thermal energy (typically we split pressure

instead to avoid negative pressures):

pi =
Ti

Ti + Te
p, pe =

Te

Ti + Te
p
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Mapping between kinetic and 2-fluid states

¬ Compression mapping from kinetic to 2-fluid states:

• compute statistical moments for each cell to get values of mass,
momentum, and pressure or energy.

 Reconstruction of particles from moments:

• uses moments and assumed form of distribution of velocities (e.g.
Maxwellian)
• needed when creating particles for an initial state or injecting particles at

model boundaries.
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Equations: Vlasov

We take the Vlasov equation as the true description of a collisionless plasma. It
says that the particle density of each species is conserved in phase space.

∂tfs +∇x · (vfs) +∇v ·
( qs
ms

(E + v ×B)fs
)

= 0,

Here s is a species index, fs(t,x,v) is particle density as a function of the
independent variables.
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Equations: kinetic

The equations of the kinetic model are Maxwell’s equations and the Lorentz
force to govern particle motion:

∂tB = −∇× E, ∇ ·B = 0,

∂tE = c2∇×B − J/ε, ∇ ·E = σ,

∂t(γvp) =
1
r

qp
mp

(
E(xp) + vp ×B(xp)

)
, ∂txp = vp,

J =
∑
p

qpvpS,

where p denotes particle index and S denotes the spatial charge distribution of
a single particle (e.g. an impulse function). (In the nondimensionalization r is
the nondimensionalized gyroradius of a typical ion.)
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Equations: 2-fluid

The equations of the ideal 2-fluid model are Maxwell’s equations coupled to the ideal gas

equations for each species (with no direct coupling between species):

∂t

266666664

ρi
ρe
ρiui
ρeue
Ei
Ee

377777775
+∇ ·

266666664

ρiui
ρeue

ρiuiui + piI
ρeueue + peIe
uiEi + uipi
ueEe + uepe

377777775
=

1

r

266666664

0

0

σiE + Ji × B
σeE + Je × B

Ji · E
Je · E

377777775
∂tB +∇× E = 0,

∂tE− c2∇× B = −J/ε,
∇ · B = 0,

∇ · E = σ/ε.

Here r :=
v0m0
x0q0B0

= rL/x0 is a nondimensionalized gyroradius and ε =
ε0v0B0
q0n0x0

is a fake

permittivity; we can write ε = rλ2, where λ2 :=
ε0B0v0
q0n0x0

defines the ratio of the Debye length

λD :=

r“
ε0m0v

2
0

n0q
2
0

”
to the gyroradius.
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Equations: MHD

The equations of ideal MHD in conservative form are

∂t


ρ
ρu
Ẽ
B

+∇ ·


ρu

ρuu + Ip̃MHD − µ−1
0 (BB)

u(Ẽ + p̃MHD)− µ−1
0 BB · u

uB−Bu

 = 0,

where Ẽ = E + µ−1
0 B2/2 is total energy, where E = (3/2)pMHD + (1/2)ρu2 is

MHD gas energy, and p̃MHD = pMHD + µ−1
0 B2/2 is total pressure.
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Numerical schemes

We have implemented second-order-accurate time-splitting finite-volume
schemes that maintain Maxwell’s divergence constraints for each of the three
models. The MHD and 2-fluid schemes are conservative and apply shock-
capturing limiters.
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Numerical PIC scheme

Our PIC scheme uses staggering in time and space to achieve second-order accuracy and

maintain the divergence constraints. Our scheme is:

(∂tE)
m+1/2

= c
2
(∇× B)

m+1/2 − Jn+1/2
/ε,

implicit case: (∂tB)
m+1/2

= −(∇× E)
m+1/2

explicit case: (∂tB)
m+1

= −(∇× E)
m+1

(∂t(γv)p)
n

=
1

r

qp

mp

“
En(xnp) +

vn+1/2
p + vn−1/2

p

2
× Bn

(xnp)
”
,

(∂txp)
n+1/2

= vn+1/2
p , Jn+1/2

=
X
p

qpv
n+1/2
p S.

For second-order accuracy we chose the particle shape S to be the size of a mesh cell.

The discrete differential operators denote second-order centered difference operators in time
and space. The spatial staggering (Yee scheme) centers vector components on the cell faces to which they are perpendicular
and centers components of pseudovectors (e.g. B) along cell edges. Taking the discrete divergence of the electromagnetic evolution
equations shows that∇ · B = 0 is maintained and that (∇ · E)n = σn/ε is maintained if we enforce that current is charge flux, i.e.,

(∂tσ)n+1/2 + Jn+1/2 = 0.
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Numerical MHD scheme

The ideal MHD system is hyperbolic, so we used a finite-volume shock-capturing method based

on the eigenstructure of the flux jacobian.

Remark: It is easier to find the eigenstructure for primitive variables and then transform to conserved variables. The 1-D MHD equations
in primitive variables and quasilinear form are:

0BBBBBBBB@

ρ
u1
u2
u3
p
B2
B3

1CCCCCCCCA
t

+

26666666666664

u1 ρ 0 0 0 0 0

0 u1 0 0 1
µ0ρ

B2
µ0ρ

B3
µ0ρ

0 0 u1 0 0
−B1
µ0ρ

0

0 0 0 u1 0 0
−B1
µ0ρ

0 γp 0 0 u1 0 0
0 B2 −B1 0 0 u1 0
0 B3 0 −B1 0 0 u1

37777777777775
·

0BBBBBBBB@

ρ
u1
u2
u3
p
B2
B3

1CCCCCCCCA
x

= 0
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Numerical 2-fluid scheme

For the two-fluid solver, we used time-splitting to decouple the hyperbolic flux
from the (nondifferentiated) source term. We used a finite-volume shock-
capturing method for the hyperbolic flux and RK4 for the source term ODE.
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Preliminary studies

The need to design a stitched model has prompted us to carry out some
preliminary studies.

• need to show that waves are transmitted smoothly across the stitching layer
between model boundaries

• need to study convergence of microscale model to macroscale model to
determine where to use the macroscale versus microscale model.
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1D convergence studies

We have done 1D convergence studies for the

¬ MHD,

 2-fluid, and

® PIC

models for the following problems:

• Brio-Wu shock problem

• polarized Alfvèn waves

• Magnetosonic waves
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Brio-Wu shock problem results

• For a large light speed, as gyroradius goes to zero, the 2-fluid simulation seem to weakly

converge to a limit that is close to the 1-fluid simulation.

• PIC simulations show rough agreement with 2-fluid simulations as we increase the number

of particles
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Computations: Brio-Wu shock problem

We computed solutions to the Brio-Wu 1-dimensional shock problem [?].

Initial conditions for ion density:

discontinuity at zero, elsewhere constant.
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Computations: Brio-Wu shock problem

For MHD the Brio-Wu initial conditions to the
left and right of zero are:

26666666666664

ρ

v1

v2

v3

p

B1

B2

B3

37777777777775
left

=

266666666664

1.0
0
0
0

1.0
0.75
1.0
0

377777777775
and

26666666666664

ρ

v1

v2

v3

p

B1

B2

B3

37777777777775
right

=

266666666664

0.125
0
0
0

0.1
0.75
−1.0

0

377777777775

The equivalent two-fluid initial conditions
are:

266666666666666666666666666666664

ρi
v1i
v2i
v3i
pi
ρe

v1e
v2e
v3e
pe

B1

B2

B3

E1

E2

E3

377777777777777777777777777777775
left

=

26666666666666666666666666664

1.0
0
0
0

0.5

1.0memi
0
0
0

0.5
0.75
1.0
0
0
0
0

37777777777777777777777777775

and

266666666666666666666666666666664

ρi
v1i
v2i
v3i
pi
ρe

v1e
v2e
v3e
pe

B1

B2

B3

E1

E2

E3

377777777777777777777777777777775
right

=

26666666666666666666666666664

0.125
0
0
0

0.05

0.125memi
0
0
0

0.05
0.75
−1.0

0
0
0
0

37777777777777777777777777775
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Computations

We plotted ion density at nondimensionalized time t = 0.1 for a range of values of the

nondimensionalized Larmor radius:

• rL =∞ (an Euler gas dynamics computation),

• rL = 10, 1, 0.1, 0.01, 0.003 (two-fluid computations), and

• rL = 0 (an ideal MHD computation).

Results:

• As rL → 0, the solution seems to weakly approach the MHD solution.

• For smaller values of rL computation becomes prohibitively expensive as we need a finer

computational grid to prevent negative pressures or densities from crashing the code and to

get convergence.

• For intermediate values of rL, the computational domain needs to be extended the most

due to substantial fast-moving oscillations.
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Computations (cell-centered), rL = 10

When the Larmor radius is large (rL = 10), the electromagnetic effects are weak and the ions

behave like an ideal gas. (At rL = 100, 2-fluid is indistinguishable from Euler.)
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Computations (cell-centered), rL = 1

As we decrease the Larmor radius, the solution begins to transition away from gas dynamics

(and eventually toward MHD).
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Computations (cell-centered), rL = 0.1

When t ≈ rL, the solution is roughly intermediate between Euler and MHD.
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Computations (cell-centered), rL = 0.01

As the Larmor radius becomes even smaller, the frequency of the oscillations increases and the

solution begins to weakly approach the MHD solution.
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Computations (cell-centered), rL = 0.003

Convergence to MHD is suggested but far from confirmed. Unfortunately, computational

expense increases with decreasing Larmor radius.
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Computations with Yee scheme

Results:

• For large Larmor radius the Yee scheme was indistinguishable from the cell-centered scheme.

• For intermediate values of Larmor radius (rL = t = 0.1), the Yee scheme is less accurate

for a coarse mesh but more accurate for a fine mesh.

• For small Larmor radius the Yee scheme required a prohibitively small mesh size to prevent

negative or vanishing densities.

• Suggested conclusion: Use the cell-centered scheme for a large mesh and switch to the Yee

scheme for a sufficiently fine mesh.
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Computations, cell-centered, rL = 0.1

(Cell-centered computation for comparison with Yee scheme.)
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Computations: Comparison with Yee scheme, rL = 0.1

The plot of the Yee scheme is indistinguishable from the unstaggered scheme except in the

squiggly area near the right end of the slow compound wave of MHD and the peak in the

rarefaction wave of MHD.
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Computations: Comparison with Yee scheme, rL = 0.1

Close-up near MHD compound wave.

The Yee scheme converges much more rapidly in this region of high oscillation near the right

end of the slow compound wave of MHD (compare the highly resolved solution in Fig. 4 of [?]).
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Computations: Comparison with Yee scheme, rL = 0.1

Close-up near MHD fast rarefaction wave.

Here at the peak in the MHD rarefaction wave region, the Yee scheme performs more poorly at

coarse resolution, but better at fine resolution (compare the highly resolved peak in Fig. 3 of

[?]).
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Computations: Brio-Wu ICs, (t = 0)

The initial conditions of the Brio-Wu problem.
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Computations: Brio-Wu kinetic ICs, (t = 0)

The initial conditions for a kinetic run of the Brio-Wu problem.
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Computations: Brio-Wu 2-fluid, rL = 0.1, t = .02

Two-fluid Brio-Wu solution
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Computations: Brio-Wu kinetic, rL = 0.1, t = .02

Kinetic Brio-Wu solution
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Computations: fast magnetosonic kinetic, rL = 0

Fast magnetosonic initial conditions
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Computations: fast magnetosonic kinetic, rL = 0.2, t = .2

Kinetic fast magnetosonic solution

42



Computations: fast magnetosonic 2-fluid, rL = 0.2, t = .2

2-fluid fast magnetosonic solution

43



Computations: fast magnetosonic MHD, rL = 0.2, t = .2

MHD fast magnetosonic solution
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