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Outline

¬ magnetic reconnection and the GEM problem

 plasma models

(a) kinetic (Vlasov, PIC)
(b) two-fluid (5- and 10-moment)
(c) one-fluid (MHD)

® comparison of two-fluid simulations with kinetic simulations

Claim: The 10-moment two-fluid model is able to resolve the structure of the
reconnection region fairly well.
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Magnetic Reconnection

Plasma is a gas of charged particles. Charged particles gyrate around magnetic field
lines. So magnetic field lines (like vortex lines) are approximately frozen into the
plasma in the “ideal MHD” regime of small gyroradius and absence of collisional
resistive drag.

The frozen-in-flux condition is violated near magnetic reconnection points.
Specifically, adjacent strongly antiparallel magnetic field lines occasion strong
magnetic field gradients and a large gyroradius, allowing magnetic field lines to
diffuse and alter the topology of the magnetic field.
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GEM problem

The GEM (Geospace Environment
Modeling) magnetic reconnection
challenge problem was formulated to
compare the ability of different plasma
models to resolve the process of magnetic
reconnection.

• rectangular domain

• boundary conditions: periodic in the
horizontal direction, upper and lower
boundaries are conducting walls

• initial conditions: Harris sheet
equilibrium perturbed by “pinching”
to form an X-point
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GEM problem: parameters and boundary conditions

Nondimensionalization. The GEM problem nondimensionalizes time by the ion gyrofrequency

Ωi =
eB0
mi

and velocity by the ion Alfvén speed vA,i :=
B0

µ0min0
(making the nondimensionalized

version of the permittivity of free space the reciprocal of the light speed squared).

Computational domain. The computational domain is the rectangular domain [−Lx/2, Lx/2]×
[−Ly/2, Ly/2], where Lx = 8π and Ly = 4π. The problem is symmetric under reflection across

either the horizontal or vertical axis.

Boundary conditions. The domain is periodic in the x-axis. The boundaries perpendicular to the

y-axis are thermally insulating conducting wall boundaries. A conducting wall boundary is a solid

wall boundary (with slip boundary conditions in the case of ideal plasma) for the fluid variables, and

the electric field at the boundary has no component parallel to the boundary. We also assume that

magnetic field runs parallel to and so does not penetrate the boundary (this follows from Ohm’s law

of ideal MHD, but we assume it holds generally). So at the conducting wall boundaries

∂yρs = 0, ∂yBx = By = ∂yBz = 0,

∂yusx = usy = ∂yusz = 0, Ex = ∂yEy = Ez = 0.
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GEM problem: initial conditions

Initial conditions. The initial conditions are a perturbed Harris sheet equilibrium. The unperturbed

equilibrium is given by

B(y) = B0 tanh(y/λ)ex, p(y) =
B2

0

2n0

n(y),

ni(y) = ne(y) = n0(1/5 + sech
2
(y/λ)), pe(y) =

Te

Ti + Te
p(y),

E = 0, pi(y) =
Ti

Ti + Te
p(y).

On top of this the magnetic field is perturbed by

δB = −ez ×∇(ψ), where

ψ(x, y) = ψ0 cos(2πx/Lx) cos(πy/Ly).

In the GEM problem the initial condition constants are

λ = 0.5, B0 = 1, n0 = 1, ψ0 = B0/10.
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Modeling

The GEM problem has been studied using a

variety of plasma models.

• Kinetic models represent particle velocity v

explicitly.

– Vlasov/Boltzmann models evolve the

particle density of each species in phase

space, fs(x, v, t).

– Particle-in-cell (PIC) models track

individual particles.

• Fluid models evolve moments of the particle

distribution function, which may be taken

as parameters of a presumed distribution

function.

Fluid models vary in the number of moments:

• Five-moment models evolve density
∫
v
fs,

momentum
∫
v
fsv, and energy

∫
v
fsv

2/2

and naturally assume a velocity-space

distribution nearly Maxwellian (isotropic

normally distributed).

• Ten-moment models evolve density,

momentum, and an energy tensor
∫
v
fsvv

and naturally assume a velocity-space

distribution nearly Gaussian (anisotropic

normally distributed).

Fluid models vary in the number of fluids:

• Two-fluid plasma models evolve separate

fluid equations for ions and electrons.

• One-fluid plasma models

(i.e. magnetohydrodynamics (MHD)) evolve

moments summed over all species. MHD

infers electric field from net current balance

(assuming quasineutrality), and assumes

current from Ampere’s law (neglecting

displacement current ∂tE).

We take the Boltzmann model as the “truth”

and PIC simulations as attempts to approximate

the Boltzmann equation. We desire simple,

computationally efficient fluid models that

accurately replicate the behavior of kinetic

models.

E. Alec Johnson 15



Equations of particle model

The first principles of classical mechanics say

that particle positions xp(t) and velocities vp(t)

change according to Newton’s laws of motion

dtṽp = Fp dtxp = vp

and the Lorentz electromagnetic force law

Fp =
qp

mp

(
E|xp + vp × B|xp

)
in response to the electric field B(x, t) and

magnetic field E(x, t), which in turn evolve

according to Maxwell’s equations

∂tB = −∇× E, ∇ · B = 0,

∂tE = c
2∇× B − J/ε0, ∇ · E = σ/ε0,

where the current density J(x, t) and charge

density σ(x, t) source terms are determined by

particle position and velocity

J =
∑

p

Sp(xp)qpvp,

σ =
∑

p

Sp(xp)qp.

In these equations c is the speed of light,

ε0 is electric permittivity, p is particle index,

ṽp(t) = γpvp is (proper) particle velocity, where

γ =
(
1− (v/c)2

)−1/2 ≈ 1 is the Lorentz

factor, qp is particle charge, mp is particle mass,

and Sp(x − xp) is particle charge distribution

(e.g., a unit impulse function).
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Equations of Boltzmann/Vlasov model

The Boltzmann equation asserts conservation of particle number density fs(x, ṽ, t)
in phase space:

∂tfs +∇x · (vfs) +∇ṽ ·
( qs

ms
(E+ v ×B)fs

)
= Cs;

here ṽ = γv ≈ v is (proper) velocity and Cs is a collision operator which operates on
the function (ṽ,p) 7→ fp(t,x, ṽ), where p ranges over all species. The collisionless
Boltzmann equation (alias Vlasov equation) asserts that Cs = 0. The relations

J =
∑

s

∫
v

fsqsv, σ =
∑

s

∫
v

fsqs.

couple the Boltzmann equation to Maxwell’s equations

∂tB = −∇×E, ∇ ·B = 0,

∂tE = c2∇×B − J/ε0, ∇ ·E = σ/ε0.
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Equations of five-moment two-fluid-Maxwell model

Generic physical equations for the five-moment two-fluid model are: (1) conservation of mass and

momentum and pressure evolution for each species:

∂tρs +∇ · (ρsus) = 0,

∂t(ρsus) +∇ · (ρsusus) +∇ps =
qs

ms

ρs(E + us × B) + Rs +∇ · σ
s
,

∂t

(
3

2
ps

)
+∇ ·

(
us

3

2
ps

)
+ ps∇ · u +∇ · qs = σ : ∇u +Q

f
s +Q

t
s,

and (2) Maxwell’s equations for evolution of electromagnetic field:

∂tB +∇× E = 0, ∇ · B = 0,

∂tE− c2∇× B = −J/ε, ∇ · E = σ/ε.

A linear isotropic entropy-respecting viscous stress closure is σ = 2µ ( Sym (∇u)−∇ · uI/3). In

these 5-moment simulations, however, we neglect all collisional effects. So we neglect viscosity, heat

flux (qs = 0), resistive drag force (Rs = 0), resistive heating (Qf
s = 0), and interspecies thermal

equilibration (Qt
s = 0),

E. Alec Johnson 18



Equations of ten-moment two-fluid-Maxwell model

Generic physical equations for the ten-moment two-fluid model are: (1) conservation of mass and

momentum and pressure tensor evolution for each species:

∂tρs +∇ · (ρsus) = 0,

∂t(ρsus) +∇ · (ρsusus + Ps) =
qs

ms

ρs(E + us × B) + Rs,

∂tPs +∇ · (usPs) + 2 Sym (Ps · ∇us) +∇ · qs = Rs + Qfs + Qts + 2 Sym (
qs

ms

Ps × B)

and (2) Maxwell’s equations for evolution of electromagnetic field:

∂tB +∇× E = 0, ∇ · B = 0,

∂tE− c2∇× B = −J/ε, ∇ · E = σ/ε.

A linear isotropic entropy-respecting isotropization closure is Rs = 1
τs

(
1
3(tr Ps)I− Ps

)
, where for

the isotropization period of species s we used τs = τ0

√
det Ps
ρ5s
m3

s , which is based on the Braginskii

closure; for the GEM problem this means that τi/τe u (mi/me)
5/4. The viscosity is related to

the isotropization period by µs = psτs. We set τ0 = 50. We neglect all other collisional terms:

the heat flux tensors qs, the resistive drag forces Rs, the frictional heating tensors Qfs , and the

temperature equilibration tensors Qts.
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Results

We ran 5-moment and 10-moment simulations of the GEM problem and compared the results with

the Vlasov simulations of [ScGr06]1 and the PIC simulations of [Pritchett01]2. 3 All plots were made

at the point in time when 16% (representing one nondimensionalized unit) of the magnetic flux

initially passing through the positive y-axis had been reconnected.

We find that two-fluid models are able to replicate published kinetic simulation plots fairly well,

and that the agreement is better for the ten-moment model than for the five-moment model. In

particular, in comparison with kinetic simulations

• the reconnection electric field agrees well for both fluid models,

• the 10-moment model reconnects at about the same rate and the 5-moment model reconnects a

bit sooner, and

• the 10-moment models matches the qualitative structure of the diffusion region fairly well.

1[ScGr06] H. Schmitz and R. Grauer, Kinetic Vlasov simulations of collisionless magnetic reconnection, Phys. Plasmas
13, 092309 (2006); doi:10.1063/1.2347101

2[Pritchett01] P. L. Pritchett, Geospace Environment Modeling magnetic reconnection challenge: Simulation with a
full particle electromagnetic code, Journal of Geophysical Research, vol. 106, no. A3, pp. 3783–3798 (2001)

3We have to negate some quantities because we call the vertical axis y and the out-of-plane axis z, opposite to the
convention of [Pritchett01] and [ScGr06].
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Reconnection for 5-moment and 10-moment two-fluid models

We compared the time until 16% reconnection

of the 5-moment and 10-moment models with

reported results:

model 16% flux reconnected

Vlasov [ScGr06] t = 17.7/Ωi:

PIC [Pritchet01] t = 15.7/Ωi:

10-moment t = 18/Ωi:

5-moment t = 13.5/Ωi:

The ten-moment model attained 16% flux

reconnected at about t = 18/Ωi:

The five-moment model attained 16% flux

reconnected at about t = 13.5/Ωi:
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Magnetic field at 16% reconnected

Magnetic field lines for PIC at Ωit = 15.7 [Pritchett01]

results, no averaging over a finite time period had to be car-
ried out here because the Vlasov simulations do not suffer
from artificial numerical noise.

A. Ohm’s law

Within the GEM reconnection challenge it has become
clear that the Hall-MHD model is a minimal model to under-
stand collisionless reconnection.4 In Hall MHD Ohm’s law
has the form

m

ne2

dj

dt
= E + vi ! B −

1
ne

j ! B +
1
ne

! · P! e,

where the resistivity has been neglected. This is the exact
electron momentum equation which can be derived from ki-
netic theory of a collisionless plasma without any approxi-
mations. At large scale lengths only the MHD terms play a
role, while the Hall term and the electron pressure gradient
can be neglected. To investigate the regions in which the

FIG. 2. !Color online" The out-of-
plane magnetic field Bz !upper panel",
the electron out-of-plane current je,z
!middle panel", and the ion out-of-
plane current ji,z !lower panel" at time
"it=17.7.

FIG. 3. Velocity profile at "it=18.1 as a function of x at the location of the
current sheet z=0 for electrons and ions.

092309-4 H. Schmitz and R. Grauer Phys. Plasmas 13, 092309 "2006#
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Magnetic field for Vlasov at Ωit = 17.7 [ScGr06]

Out-of-plane magnetic field of [Pritchett01]
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Out-of plane electric field at about 16% reconnected

terms of the generalized Ohm’s law become important, we
calculated the different contributions in the whole reconnec-
tion region.

The top panel of Fig. 4 shows the inductive electric field
Ez. This inductive field is necessary for reconnection to take
place. The region of enhanced Ez is situated in a relatively
large region around the X line. The peak electric field is
located in an elongated area extending about two ion inertial
lengths in the y direction and about 4 ion inertial lengths in
the x direction. In contrast, the region where the field ex-
ceeds half its peak value is almost circular with a diameter of
about 5 ion inertial lengths. The middle panel of Fig. 4
shows the z component of the Hall term !j!B"z. In contrast
to the inductive electric field, this quantity shows a more
detailed structure. Two strong peaks are found left and right
of the X line. The peak values slightly exceed the maximum
value of Ez. These peaks coincide with the maxima of the

electron outflow velocity !see Fig. 3". This shows that the
Hall term is most important in the outflow regions where the
electrons are accelerated to super-Alfvénic velocities. In ad-
dition, two weaker peaks are located above and below the X
line, where the electrons are accelerated towards the X line
and the electron velocity starts to diverge from the E!B
velocity. Due to the symmetry conditions, the Hall term is
exactly zero at the X line itself. In addition to the structure
around the X line, we also observe sheets of negative valued
Hall term along the separatrix. We attribute this to the current
loop that generates the quadrupolar magnetic field Bz. Away
from the X line, the electrons responsible for the current have
to cross the separatrix back into the upstream region in order
to close the loop. Therefore, the Hall term will have negative
values along the separatrix. The magnitude of the Hall term
here is almost half the peak magnitude in the X line region.

The bottom panel of Fig. 4 shows the distribution of

FIG. 4. !Color online" z component of
the inductive electric field Ez !upper
panel", Hall term j!B !middle panel"
and the negative z component of vi
!B !lower panel" at time "it=17.7.
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Vlasov at Ωit = 17.7 [ScGr06] PIC averaged over Ωit = 15.0 to 15.6 [Pritchett01]

10-moment Ωit = 18 5-moment Ωit = 13.5
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Diagonal components of the electron pressure tensor

−!vi!B"z. This term becomes nonzero when ions can move
across the magnetic field lines in a region of a few ion iner-
tial lengths around the X line. Again two peaks can be ob-
served in the outflow region. The peak values are, however,
less than half of the inductive electric field. A striking feature
in this picture is the almost circular ring around the X line,
where the ions become demagnetized. The sheets of en-
hanced value along the separatrix are narrower than those

observed from the Hall term. They have the same sign as the
peaks near the X line and therefore partially cancel the Hall
term.

Figures 5 and 6 display the components of the electron
pressure tensor. Although only the two mixed elements Pxz
and Pyz play a role in the z component of Ohm’s law, the
other elements are shown for completeness. The upper panel
of Fig. 5 shows the diagonal terms of the pressure tensor.

FIG. 5. !Color online" The diagonal
components of the pressure tensor at
time "it=17.7.

FIG. 6. !Color online" The off-
diagonal components of the pressure
tensor at time "it=17.7.
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Diagonal components of the electron pressure

tensor for Vlasov simulation at Ωit = 17.7

[ScGr06]
Diagonal components of the electron pressure

tensor for 10-moment simulation at Ωit = 18

E. Alec Johnson 24



Off-diagonal components of the electron pressure tensor
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tensor for 10-moment simulation at Ωit = 18
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Plasma Theory: GEM problem

There are only three sources that can provide for magnetic reconnection in any plasma model.

At the X-point, “Ohm’s law” says that the rate of reconnection is the sum of a resistive term, a

nongyrotropic pressure term, and an inertial term:

rate of reconnection = E3(0) =

[−Ri

eni
+
∇ · Pi
eni

+
mi

e
∂tui

]
3

∣∣∣∣
origin

.

Consequences:

¬ For steady-state reconnection without resistivity the pressure term must provide for the

reconnection.

 For a gyrotropic plasma without resistivity the inertial term must provide for the reconnection;

i.e. each species velocity at the origin should track exactly with reconnected flux.
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5-moment versus 10-moment reconnection at X-point (pair plasma)

Without viscosity or resistivity entropy cannot change. The current at the X-point is forced to

ramp up with reconnected flux as cancelled magnetic field energy is converted to kinetic energy.

Eventually numerical viscosity/resistivity kicks in to balance reconnection and numerical entropy

production permits steady reconnection.

Five-moment reconnection: Ten-moment reconnection with relaxation toward

isotropy (viscosity)
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Convergence challenges

• The GEM problem is unstable and incompletely posed (unless supplemented by a nonvanishing

collision model).

– Reconnection is a relaxation from higher to lower entropy.

– Collisionless models are hyperbolic (entropy-conserving).

– So simulations of reconnection in collisionless models (e.g. Vlasov simulations, PIC simulations,

and my 5-moment simulations) rely on numerical entropy dissipation.

– GEM problem is unstable to tearing instability (formation of magnetic islands) and depends

critically on choice of collision model.

– Magnetic islands (plasmoids) tend to form. When enforcing symmetry about the X-point a

magnetic island sometimes forms there, stopping reconnection there.

• Problems I am having:

– Central islands: I am enforcing symmetry to facilitate X-point analysis. When a central

island forms I get no reconnection. Central islands seem more likely to occur as I refine the

mesh.

– Negative density/pressure at X-point. My 10-moment simulations typically blow up at the

X-point, generally in the interval 20 ≤ Ωit ≤ 25.

∗ Near-vanishing density and/or highly anisotropic pressure near X-point causes vulnerability.

∗ I hope that adding heat flux diffusion will regularize behavior near the X-point.
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Future work

¬ Add viscosity to five-moment model and verify that it agrees with the 10-moment
model with isotropization.

 Add heat flux to regularize solutions and demonstrate convergence for fine mesh.
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