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Abstract: iPic3D implements the Implicit Moment Method (IMM). IMM is a semi-implicit solver for
the classical kinetic-Maxwell system. IMM is implicit in electromagnetic field and current but not in
current flux. IMM can thus step over oscillations and light waves (but must resolve electron sounds
waves). IMM’s explicit current flux makes updated current a linear function of updated electric field,
making the field update independent of the particle update.

Classical 2-fluid MHD assumes instantaneous light waves (c → ∞). Classical one-fluid MHD also
assumes instantaneous oscillations (e → ∞). So IMM is the natural method to smoothly and
efficiently handle the classical two-fluid and one-fluid MHD limits for fixed ion-electron mass ratio.

For truly relativistic problems, the appropriate semi-implicit method is not IMM but the Implicit
Source method, because relativistic one-fluid MHD assumes instantaneous source term oscilla-
tions (e→∞) but has no fast waves (c 9∞).

IMM is a general electromagnetic solver and can be used independent of whether kinetics are
modeled with particles, the Vlasov equation, or a fluid model.
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kinetic-Maxwell (the “truth”)

particle evolution:

dt xp = vp,

dt up = e
q#

p
mp

(vp × B(xp) + E(xp)) + rp,

γ2
p := 1 + (up/c)2,

vp := up/γp.

electromagnetic field:

∂t B +∇× E = 0,

−c−2∂t E +∇× B = µ0J,

∇ ·B = 0, c−2∇ ·E = µ0σ,

charge density and current:

σ(x) := e
∑

pSp(x− xp)q#
p ,

J(x) := e
∑

pSp(x− xp)q#
p vp.

To abbreviate, drop the particle summation
index p and the independent variable x and
write q := eq#

p :

σ :=
∑

qS (charge),

ρ :=
∑

mS (mass),

J :=
∑

vqS (current),

M :=
∑

umS (momentum),

E :=
∑ 1

2 |v|
2mS (energy).

Collisional acceleration rp must conserve
momentum and energy:∑

rpmpSp = 0 (momentum),∑
rp · vpmpSp = 0 (energy).
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Moment evolution

Shape motion:

∂t S = −v ·∇S , (1)

where we have used the chain rule.

Lorentz force.

u̇ = q
m (E + v× B)

Energy change.

γ̇ = v · u̇ = q
m v ·E , (2)

because γ2 = 1 + (u/c)2, so γγ̇ = u · u̇/c2.

Velocity change.

v̇ = q
γm

(
E− vv

c2 ·E + v× B
)
,

which follows from differentiating u = γv, to
get u̇ = γ̇v + γv̇, i.e. γv̇ = u̇− vv · u̇.

General moment evolution.
Moments definitions are of the form

∑
χS. To

derive fluid equations, differentiate the
moment definition:

∂t
∑

χS =
∑

χ∂t S +
∑

χ̇S

and use the basic derivatives to the left.
Using ∇v = 0 gives:

∂t
∑

χS +∇ ·
∑

vχS =
∑

χ̇S,

χ̇ =
∂χ

∂u
· u̇ =

∂χ

∂v
· v̇,

Momentum density (χ = mu).

∂t
∑

pmpupS(x− xp)

+∇ ·
∑

pvpupmpS(x− xp)

= (
∑

qpS(x− xp)) E
+ (
∑

qpvpS(x− xp))× B.
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Moment evolution

Relativistic case.
Mass density (χ = m).

∂tρ+∇ ·
∑

vmS = 0

Momentum density (χ = mu).

∂t M +∇ ·
∑

vumS = σE + J× B

Energy density (χ = mc2γ).

∂tE +∇ ·M = J ·E

Charge density (χ = q)

∂tσ +∇ · J = 0

Current density (χ = qv)

∂t J +∇·P =
∑

S q2

γm

(
I− vv

c2

)
·E +

∑
S q2v
γm × B ,

where P :=
∑

qvv.

Classical case.
Mass density (χ = m)

∂tρ+∇ ·M = 0

Momentum density (χ = mv)

∂t M +∇ ·
∑

vvmS = σE + J× B

Energy density (χ = 1
2 m|v|2)

∂tE +∇ ·
∑ 1

2 vv2mS = J ·E

Charge density (χ = q).

∂tσ +∇ · J = 0

Current density (χ = qv) for species s

∂t Js +∇ ·Ps = qs
ms

(σsE + Js × B)

where Ps restricts to species s.
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numerics framework for model limits

Goal: numerics that efficiently handles model limits.

Want: PIC code that works in the MHD limit.
Program: study deriviation of physics equations and discretize
consistently.
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Limit models

Classical ideal MHD assumes three limits:
process limit consequence
collisions νss →∞ 2-fluid Maxwell
light waves c →∞ 2-fluid MHD
oscillations e→∞ 1-fluid MHD

Subsets of these three limits yield a
commuting cube of 8 = 23 limit models.

Use SI for classical limit:

SI-looking units arise naturally from a
generic nondimensionalization:

e is gyrofrequency,
c is c/vt .

In Gaussian units, B has incorrect
scaling.

Trying to treat spatial (B) and temporal
(E) components of field tensor
symmetrically. . .
but trying to treat space and time
asymmetrically (c 6= 1).

Therefore, in Gaussian units:
cannot analyze classical limit c →∞.
cannot handle classical limit in
asympototic preserving manner.

Fluid model limits (νss =∞)

2fluid-Maxwell c→∞−−−−−→
IMM

2fluid MHD

e→∞
yImpSrc

ye→∞

“relativistic” MHD c→∞−−−−−→ classical MHD

Kinetic model limits (νss = 0)

Kinetic-Maxwell c→∞−−−−−→
IMM

Kinetic-XMHD

e→∞
yImpSrc

ye→∞

Kinetic‖MHD c→∞−−−−−→ Classical Kinetic‖MHD

Other limits are possible:
The limit mi/me →∞ for fixed e yields Hall
MHD.

I assume mi/me is fixed (finite).
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Classical model hierarchy

1 kinetic-Maxwellyνss →∞ (fast collisions)

2 two-fluid Maxwell: one gas for each species: ρs(x), Vs(x), Es(x)yc →∞ (fast light waves)

3 two-fluid MHD: E = V× B + ηJ + · · ·ye→∞ (fast plasma oscillations)

4 classical MHD: E = V× B + ηJ
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2-fluid Maxwell

gas evolution:

∂tρs +∇ · (Vsρs) = 0,

ρsd s
t Vs +∇ps +∇ ·P◦s = σsE + Js × B + Rs

ρsd s
t Es + ps∇ ·Vs + P◦s :∇Vs +∇ ·qs = Qs

electromagnetic field:

∂t B +∇× E = 0,

−c−2∂t E +∇× B = µ0J,

∇ ·B = 0, c−2∇ ·E = µ0σ.

σ := σi + σe, σs :=
eq#

s
ms
ρs.

J := Ji + Je, Js := σsVs.

Closures:

Re

en
≈ η · J + βe ·qe,

Ri = −Re,

Qs =: Qex
s + Qfr

s ,

Qex
s ≈ 3

2 Ks n2(T0 − Ts),

Qfr := Qfr
i + Qfr

e

≈ η : JJ + βe : qeJ,

Qfr
i = Qfr

e me/mi,

P◦s ≈ −2µs :∇V◦s ,
qs ≈ −ks ·∇Ts.


Definitions:

d s
t := ∂t + Vs ·∇,

cs := v− Vs,

ns := ρs/ms,

X◦ :=
X + XT

2
−

I trX
3

.
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2-fluid MHD (extended)

mass and momentum (total):

∂tρ+∇ · (Vρ) = 0

ρdt V +∇ · (Pi + Pe + Pd) = J× B

energy evolution (per species):

ρidtEi + pi∇ ·Vi + P◦i :∇Vi +∇ ·qi = Qi,

ρedtEe + pe∇ ·Ve + P◦e :∇Ve +∇ ·qe = Qe;

electromagnetism

∂t B +∇× E = 0, ∇ ·B = 0,

J = µ0
−1∇× B

Ohm’s law (evolution of J solved for E)

E = η · J + B× V + mi−me
eρ J× B

+ 1
eρ∇ · (me(piI + P◦i )−mi(peI + P◦e ))

+ mime
e2ρ

[
∂t J +∇·(VJ + JV− mi−me

eρ JJ)
]

Closures (simplified):

Q := Qi + Qe

≈ η : JJ

Qs =
mred
ms

Q,

P◦s ≈ −2µs :∇V◦s ,
qs ≈ −ks ·∇Ts.

Definitions:

dt := ∂t + V ·∇,

w = J
en ,

wi =
mred
mi

w,

we =
−mred

me
w,

Pd := mrednww,

m−1
red := m−1

e + m−1
i .
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Relativistic model hierarchy

1 kinetic-Maxwellyνss →∞ (fast collisions)

2 two-fluid Maxwell: Euler gas for each species: ρs, Vs, psye→∞ (fast oscillations)

3 relativistic MHDyc →∞ (fast light waves)

4 classical MHD: E = V× B + ηJ
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two-fluid Maxwell→ MHD

Two-fluid Maxwell:

gas evolution:

∂tρs +∇ · (ρsVs) = 0,

ρsd s
t Vs +∇ps = Js × B + σsE + Rs,

d s
t ps + γps∇ ·Vs = 2

3
mred
ms

Q

electromagnetic field:

∂t B +∇× E = 0,

−c−2∂t E +∇× B = µ0J,

∇ ·B = 0, c−2∇ ·E = µ0σ,

J := Ji + Je, Js := σsVs,

σ := σi + σe, σs := ± e
ms
ρs.

closure:

−Ri = Re = e2neniη · (Vi − Ve)

≈ enη · J,
Q = −

∑
sRs ·Vs ≈ J ·η · J.

Quasi-relativistic MHD (e→∞):

gas evolution:

∂tρ+∇ · (ρV) = 0 (mass),

ρdt V +∇p = J× B + σE (momentum),

dt p + γp∇ ·V = 2
3 J ·η · J (thermal energy).

magnetic field:

∂t B +∇× E = 0 (magnetic field),

E = B× V + η · J (Ohm’s law),

∇ ·B = 0 (divergence constraint),

µ0J := ∇× B− c−2∂t E (Ampere’s law for current),

µ0σ := c−2∇ ·E (quasineutrality).

definitions:

d s
t := ∂t + Vs ·∇,

dt := ∂t + V ·∇,

γ := 5
3 ,

m−1
red :=

∑
s

m−1
s .
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two-fluid Maxwell→ MHD

Two-fluid Maxwell:

gas evolution:

∂tρs +∇ · (ρsVs) = 0,

ρsd s
t Vs +∇ps = Js × B + σsE + Rs,

d s
t ps + γps∇ ·Vs = 2

3
mred
ms

Q

electromagnetic field:

∂t B +∇× E = 0,

−c−2∂t E +∇× B = µ0J,

∇ ·B = 0, c−2∇ ·E = µ0σ,

J := Ji + Je, Js := σsVs,

σ := σi + σe, σs := ± e
ms
ρs.

closure:

−Ri = Re = e2neniη · (Vi − Ve)

≈ enη · J,
Q = −

∑
sRs ·Vs ≈ J ·η · J.

Classical MHD (c →∞, e→∞):

gas evolution:

∂tρ+∇ · (ρV) = 0 (mass),

ρdt V +∇p = J× B (momentum),

dt p + γp∇ ·V = 2
3 J ·η · J (thermal energy).

magnetic field:

∂t B +∇× E = 0 (magnetic field),

E = B× V + η · J (Ohm’s law),

∇ ·B = 0 (divergence constraint),

µ0J := ∇× B (Ampere’s law for current),

µ0σ := 0 (neutrality).

definitions:

d s
t := ∂t + Vs ·∇,

dt := ∂t + V ·∇,

γ := 5
3 ,

m−1
red :=

∑
s

m−1
s .
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Limit models and semi-implicit schemes

Classical ideal MHD assumes that three processes of kinetic-Maxwell are instantaneous:

process limit consequence
collisions νss →∞ fluid approximation
oscillations e→∞ relativistic one-fluid MHD
light waves c →∞ classical two-fluid MHD

Explicit schemes must resolve all these
processes.

Implicit schemes can step over fast processes,
allowing smooth and efficient
(asymptotic-preserving) transition to the limit
model that assumes the fast process is
instantaneous.

Fully implicit schemes can step over all
processes including MHD waves but require
iterating the entire solve.

Semi-implicit schemes are a cheap alternative
that can step only over the needed subset of
processes.

Implicit Source (IMEX) schemes step over fast
source term processes (ν →∞ and e→∞) but
not over fast waves (c →∞) and are suitable for
relativistic codes.

The Implicit Moment Method (IMM) steps over
all three processes without stepping over any
two-fluid MHD waves.

Discretization must resolve. . . AP limit model
Explicit plasma period [everything] —
Implicit Source (IMEX) light waves relativistic MHD
Implicit Moment (IMM) electron sound waves ideal MHD
Fully Implicit [no restriction] [implicit MHD]

Johnson Implicit kinetic plasma Mar 4, 2014 16 / 30



Explicit discretization

Start with the basic equations:

∂tB +∇× E = 0,

∂tE− c2∇× B = −J/ε0,
∂txp = vp,

∂tup =
qp

mp
(E(xp) + vp × B(xp)) .

For a second-order discretization,
use a leapfrog discretization:

B does not need particle
velocities to advance, but E
does, so particle velocities up
and current J should be
staggered relative to E.
∂tX = (X 2 − X 0)/∆t
∂tY = (Y 3 − Y 1)/∆t

In the relativistic case, time-split the
velocity update for a symplectic method. In
full detail:

B2 = B0 −∆t∇× E1,

E1 = E−1 + ∆t
(
c2∇× B0 − J0/ε0

)
,

u∗p = u0
p +

qp∆t
2mpγ0

p
(u∗p + u0

p)× B1(x1
p),

u2
p = u∗p + ∆t qp

mp
E1(x1

p),

where B1 := 1
2 B0 + 1

2 B2.
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Fully implicit method

The fully implicit method makes all terms
implicit:

∂tB +∇× E = 0

∂tE− c2∇× B = −J/ε0
∂tup =

qp

mp

(
σpE(xp) + vp × B(xp)

)
,

∂txp = vp,

∂tσs +∇ ·Js = 0,

∂tJs +∇ ·P s = qs
ms

(
σsE + Js × B

)
.

Remarks.

No time step restriction.
Particle advance must be
redone with successive
iterations of the field solver.
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IMEX discretization (implicit source) [KumarMishra11]

Use initial values for flux terms.
and implicit values in stiff source.

Fields:

∂tB +∇× E = 0,

∂tE− c2∇× B = −J/ε0.

Particles:

∂tup =
qp

mp

(
E(xp) + vp × B(xp)

)
,

∂txp = vp,

∂tσs +∇ ·Js = 0.

Cassical current:

∂tJs +∇ ·Ps = qs
ms

(
σsE + Js × B

)
.

We designate n = 0 as initial time,
n + 1 = 1 as final time, and time
discretization as

∂tQ → (Q1 −Q0)/∆t ,

∇F → F 0,

X = X 1.

Classical case: No source term iteration
happens to be needed, because v is linear
in E. Can sum the response over all
particles to eliminate J = Ĵ + A ·E in favor
of E.

Relativistic case: Must iterate particle
velocity advance, but positions need not be
advanced, so iterative solve involves no
communication between mesh cells.
High-order accuracy: Use an IMEX
Runge-Kutta solver.
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IMM (implicit moment method – case θ = 1
2 ) [VuBrackbill92]

To linearize the Maxwell source term, modify
the fully implicit discretization by replacing
the updated charge densities and magnetic
field with explicitly evolved values.

∂t B +∇× E = 0

∂t E− c2∇× B = −J/ε0,

∂t vp =
qp
mp

(
E(x′p) + vp × B′(x′p)

)
,

∂t xp = vp,

∂tσs +∇ · Js = 0,

∂t Js +∇ ·Ps = qs
ms

(
σ
′
s E + Js × B′

)
For second-order accuracy in relevant terms,
use time averages for the implicit terms:

∂t Q → (Q1 − Q0)/∆t,

∇F → F 0
,X = 1

2 X 0 + 1
2 X 1

,

v = 1
2 v0 + 1

2 v1
,

J = 1
2 J0 + 1

2 J1
,

E = 1
2 E0 + 1

2 E1
.

Observe that in this discretization,

∂t X = 2(X− X 0)/∆t.

Divergence constraints. Eliminating B from this field
discretization and assuming mimetic operators, the field solve is
exactly equivalent to

c−2
∂t E = ( 1

2 ∆t)
(
∇2E−∇(∇ · E)

)
+
(
∇× B0 − µ0J

)
;

following [RicciLapentaBrackbill02], to ensure the divergence
constraint error is damped, substitute (∇ · E)→ (µ0c2σ), where
σ := σ0 − 1

2 ∆tJ.

High-order accuracy. Use implicit Euler discretization and plug
scheme into Runge-Kutta method.

Classical case. Can eliminate J in favor of E by putting current
evolution in the form J = Ĵ + A · E. Defining
B′ = B0 − ∆t

2 ∇× E0, B′ = B, σ′s = σ0
s − ∆t

2 ∇ · J0
s would yield

full second-order accuracy in time. IMM in literature uses
B′ = B′ = B0 and σ′s = σ0

s , Particle advance is solved
iteratively, initialized with x′p ←[ x0

p ; two iterations is enough for
second-order accuracy.

Relativistic case. Implicit source seems preferable to IMM for
the fully relativistic case for multiple reasons:

Why step over light waves but not over relativistic sound
waves or fluid speed? An implicit source time step is much
cheaper and involves no long-distance communication.

The source term system responds nonlinearly to E and is
not closed, so an implicit particle velocity advance must be
repeated with successive iterations of the field solve.
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Implicit solve

Calculating particle and current
advance in response to the
electromagnetic field requires
solving equations of the form

U = V + U×Ω (3)

To solve for U, dot and cross both
sides with Ω to get the equations:

U ·Ω = V ·Ω,
U×Ω = V×Ω + ΩΩ ·U− |Ω|2U

= V×Ω + ΩΩ ·V− |Ω|2U.

So eliminating U×Ω in (3),

U(1 + |Ω|2) = (I−Ω× I + ΩΩ) ·V.

That is,

U =
I−Ω× I + ΩΩ

1 + |Ω|2
·V .

Equation (3) says that

(I + Ω× I) ·U = V

We thus infer that

(I + Ω× I)−1 =
I−Ω× I + ΩΩ

1 + |Ω|2
.
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IMM average current calculation (classical)

Recall classical current evolution:

∂tJs +∇ ·Ps = qs
ms

(
σ′sE + Js × B′

)
.

Discretize ∂tJs as J1
s−J0

s
∆t =

Js−J0
s

∆t/2 . So

Js = J0
s − ∆t

2 ∇ ·Ps + βs(σ
′
sE + Js × B′),

where βs := qs∆t
2ms

. This is of the form (3),

U = V + U×Ω,

where

U = Js,

V = J0
s − ∆t

2 ∇ ·Ps + βsσ
′
sE,

Ω = βsB.

Thus, the linear response of
average current to average electric
field is given by:

J = Ĵ + A ·E,
A :=

∑
sβsσ

′
sΠs,

Ĵ :=
∑

sĴs,

Ĵs := Πs ·
(
J0

s − ∆t
2 ∇ ·Ps

)
,

Πs :=
I−Ωs × I + ΩsΩs

1 + |Ωs|2
,

Ωs := βsB′,

βs := qs∆t
2ms

,

σ0
s :=

∑
p∈sS(x− x0

p)qp,

J0
s :=

∑
p∈sS(x− x0

p)qpv0
p ,

Ps :=
∑

p∈sS(x− x0
p)qpv0

pv0
p .
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IMM implicit field solver
The implicit moment method
differences Maxwell’s evolution
equations implicitly as:

∇× E +
B− B0

θ∆t
= 0,

∇× B−
E− E0

c2θ∆t
= µ0J;

where X := θX1 + (1− θ)X0, so
θ(X1 − X0) = X− X0. To
eliminate B and get an equation
implicit in E, take the curl of the
first equation:

(cθ∆t)2∇×∇×E + E

= E0 + c2
θ∆t(∇×B0−µ0J).

The implicit moment method
assumes that average current
responds linearly to average
electric field:

J = Ĵ +
χ

µ0c2θ∆t
· E,

where the “implicit
susceptibility” tensor χ is
defined so as to be unitless.

Substituting for J yields the field equation used in
[KamimuraMBLT92]:

(cθ∆t)2∇×∇×E + (E+χ · E)

= E0 + c2
θ∆t(∇×B0−µ0Ĵ).

(4)

Including the approximate identities

∇×∇×E = −∇2E +∇∇ · E,

∇ · E = µ0c2
σ, (5)

where σ := σ
0 − θ∆t∇ · J

gives a numerically overdetermined system; we
modify the method to damp diverge error by
invoking the discrete divergence contraint (5).
With these assumptions,

∇ · E = µ0c2
σ̂ −∇ · (χ · E),

where σ̂ := σ
0 − θ∆t∇ · Ĵ .

Substituting for∇×∇×E in equation (4),

(E+χ·E)−(cθ∆t)2(∇2E +∇∇·(χ·E))

= E0 +c2
θ∆t(∇×B0−µ0(Ĵ+c2

θ∆t∇σ̂)).

Divergence error is damped
by this equation, whereas it
neither grows nor decays
for (4).

Having found E,

B1 = B0 + ∆t∇× E,

E1 = θ
−1E + (1−θ−1)E0

.

Observe that this magnetic
field update maintains the
condition that the magnetic
field is a discrete curl up to
machine precision
independent of whether
mimetic operators are used.

Accurate closure.

This scheme is
second-order accurate for
θ = 1/2 and first-order
accurate for 1

2 < θ ≤ 1; it
is unstable for θ < 1/2.

Needed information:

χ := (µ0c2θ∆t) A

Ĵ, σ0

B0, E0
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Implicit Source field solver
The Implicit Source field solver uses exactly the same
formula for average current J = Ĵ + A · E as the
Implicit Moment Method, but since the
electromagnetic flux is not implicit the update is
noniterative.

The Implicit Source system is:

∇× E0 +
B− B0

θ∆t
= 0,

∇× B0 −
E− E0

c2θ∆t
= µ0

(
Ĵ +

χ

µ0c2θ∆t
·E
)

Solving for E and B yields the implicit source field
update:

E = (I + χ)−1 ·
(

(∇× B0 − µ0Ĵ)c2
θ∆t + E0

)
B = B0 + θ∆t∇× E0

Replacing B0 and E0 with a previously computed
value of B and E would make this update a black-red
Gauss-Seidel update for the Implicit Moment Method
that could be used effectively in a multigrid field
solver; iterating the particle advance and using
consistently updated values for χ and Ĵ would make
this a fully implicit field solver.

Accuracy

This scheme is second-order accurate (in time) for
θ = 1/2.

Stability

The implicit source method is unable to take a time
step in the stability window of the implicit moment
method and requires a means of suppressing the
finite grid instability.

Divergence constraints

Divergence contraint error in the electric field could be
damped using a correction potential, although in fluid
simulations I have not found it necessary or helpful to
invoke them. Alternatively, charge conservation is
possible via moment tracking.

In my experience, maintaining the divergence
constraint for the magnetic field is critical; note that
this magnetic field update maintains the condition that
the magnetic field is a discrete curl up to machine
precision independent of whether mimetic operators
are used.

Needed information: B0, E0, Ĵ, and
χ := (µ0c2θ∆t) A,
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Implicit particle mover (classical)

Particle position and velocity are
differenced as

x1
p = x0

p + vp∆t ,

vp := 1
2 v1

p + 1
2 v0

p ,

v1
p = v0

p + 2βs

(
Eθp + vp × Bϑp

)
,

where s is the species of particle p, ϑ
might equal θ or 0, and βs := qs∆t

2ms
.

Choosing Bϑp := Bϑ(x0
p) yields an

explicit particle advance. Choosing
Bϑp := Bϑ(xp) and Eθp := Eθ(xp),
where xp := 1

2 x1
p + 1

2 x0
p , defines an

implicit particle advance. Use two
iterations beginning with the explicit
advance for second-order accuracy.

Eliminating v1
p in favor of vp,

vp = v0
p + βs

(
Eθp + vp × Bϑp

)
.

This is of the form

U = V + U×Ω,

where

U = vp,

V = v0
p + βsEθp ,

Ω = βsBϑp .

Thus,

vp = v̂0
p + βsΠ

ϑ
p ·Eθp ,

v̂0
p := Πϑp · v,

Πϑp :=
I−Ωp × I + ΩpΩp

1 + |Ωp|2
,

Ωp := βsBϑp ,

βs :=
qp∆t
2mp

.

Observe that |Ωp|
is half the
gyrofrequency for
particle p. Note
that ϑ ∈ {0, θ} is
chosen based on
whether the
updated magnetic
field is already
known. A
first-order-accurate
field predictor
allows for a fully
second-order-
accurate solve with
ϑ = θ = 1

2 .
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Implicit particle mover (relativistic) [NoguchiTroZucLap07]

Advance the position and velocity
of each particle p via

u1 = u0 + 2βs

(
Eθp + v× Bϑp

)
,

(6)
v := u/γ,

x1
p = x0

p + v∆t,

where u := 1
2 u1 + 1

2 u0, u = up

(etc.), γ := 1
2γ

1 + 1
2γ

0, and
βs := qs∆t

2ms
; choosing

Bϑp := Bϑ(x0
p ) yields an explicit

advance, and choosing
Bϑp := Bϑ(xp) and Eθp := Eθ(xp)

defines an implicit advance, where

xp := 1
2 x1

p + 1
2 x0

p .

Use 2 iterations beginning with the
explicit advance for second-order
accuracy. Since u1 = 2u− u0,

u = u0 + βs(Eθp + v× γ−1Bϑp ).

This is of the form

U = V + U×Ω, (7)

where U = u, V = u0 + βsEθp , and,
Ω = γ−1βsBϑp is half the gyrofrequency
vector. Thus (restoring index p),

up = û0
p + βsΠ

ϑ
p · Eθp ,

û0
p := Πϑp · u0

p ,

Πϑp :=
I−Ωp × I + ΩpΩp

1 + |Ωp|2
,

Ωp :=
βp

γp
Bϑp ,

βs := qs∆t
2ms

,

This system would be an explicit solution if
xp and γp were known.
In the classical case, γp = 1.
In the relativistic case,
γ2 = 1 + (u/c)2,
so γdγ = u · du/c2, i.e.,
dγ = v · du/c2.

Substituting into (6),

γp = γ
0
p + βpEθp · v′/c2

,

where this equality holds if
v′ = vp. The initialization
v′ ←[ v0

p yields an iterative
solver. The relativistic implicit
moment method is based on
this first iteration.

Note that ϑ ∈ {0, θ} is
chosen based on whether the
updated magnetic field is
already known. A
first-order-accurate field
predictor allows for a fully
second-order-accurate solve
with ϑ = θ = 1

2 .
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Relativistic and dusty current response

Recall relativistic current evolution:

∂tJ +∇ ·P =
∑

S q2

γm

(
I− vv

c2

)
·E +

∑
S q2v
γm × B .

Contrast classical current
evolution for species s:

∂tJs +∇ ·Ps = qs
ms

(σsE + Js × B).

Unlike for the classical case,
relativistic current evolution is
not closed.

The response to the electric field
is nonlinear and unique for each
particle.

In the relativistic and dusty case,
the response of current must be
summed over all particles.

Linear(ized) response of (relativistic) dust:

J = Ĵ + A ·E,

A :=
∑

pqpβpγ
−1
p Πϑp S(x− x0

p),

Ĵ :=
∑

p(qpv̂S)− ∆t
2 ∇ ·

∑
pqpv̂pv̂pS,

v̂0
p := γ−1

p Πϑp ·u0
p ,

Πϑp :=
I−Ωp × I + ΩpΩp

1 + |Ωp|2
,

Ωp := βpB′,

βp :=
qp∆t
2mp

.
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Take-home points:

IMM is not particular to particle codes. IMM, Implicit Source, and the Fully
Implicit scheme can be used with a Vlasov or (higher-moment) fluid model
and are defined by which terms are implicit.
IMM assumes that current responds classically to the electric field (but a
relativistic pusher can still be appropriate to handle high-energy particles).
For truly relativistic problems, use the Implicit Source method.
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