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Hyperbolic conservation laws

Assume a hyperbolic conservation law of the form

∂tu(t ,x) +∇ ⋅ f(t ,x,u) = 0.

Physical solutions can develop shocks but always satisfy the integral form

d

dt
∫

K
u + ∮

∂K
n̂ ⋅ f = 0 for any region K . (1)

Assume that physical solutions remain in a convex cone P.

Positivity limiters yield a numerical method that:
1 satisfies a discrete local conservation law like (1),
2 is high-order accurate for smooth solutions, and
3 satisfies a discrete local positivity condition −∫K u ∈ P,

where for the discrete versions the region K is a mesh cell.

Benefits:
1 Conservation: correct shock speeds
2 Accuracy: physicality
3 Positivity: stability
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Simplification: scalar case

In the scalar case, we want to enforce u ≥ 0 for a scalar conservation law:

∂tu(t ,x) +∇ ⋅ f(t ,x,u) = 0.

Observation: In each time step the outflow from each cell must be less than its
initial content.

This leads to a simple framework we call outflow positivity limiting.

What about the systems case?

The systems case reduces to the scalar case!
Any convex cone P is an intersection of half-spaces.
Each half-space is the set on which a linear functional Λ is positive.
Composing Λ with a hyperbolic system yields a scalar PDE:

∂t(Λu)(t ,x) +∇ ⋅ (Λf)(t ,x,u) = 0.
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Godunov method

● Define the speed cap λ to be an upper bound on twice the signal speed;
● Define the scale-invariant speed cap to be λ ∶= λA

V ;
● Define the positivity CFL number of a time step ∆t to be CFLpos ∶= ∆tλ (e.g. 2∆tλ

∆x ).1

Godunov maintains positivity of the cell average by repeating the following sequence:
1 Reset the solution to the cell average.
2 “Physically evolve” for a time step for which CFLpos is at most 1.
3 Find the exact flux of the Riemann problem at each interface.

x

u(0, x)

u(∆t, x)

uGodunov(∆t, x)

0 ∆x 2∆x
Success:

conservative

solution remains positive (because physical solutions remain positive).

positivity-preserving time step is maximum attained by explicit methods.

Problem: Solution is only first-order accurate.

1An extra factor of two is needed because we assume a spatially varying flux function.

E.A. Johnson (KU Leuven) Outflow positivity limiting October 18, 2012 6 / 40



DG/WENO method

DG/WENO updates the average in each mesh cell K using a piecewise continuous solution repre-
sentation U which is a high-order polynomial in each mesh cell:

x

U

U

d

dt ∫K
U + ∮

Q

∂K
h(U−,U+

) = 0 (method-of-lines ODE),

∫
K

Un+1
= ∫

K
U −∆t ∮

Q

∂K
h (Euler step),

where U ∣K ∈ V (a finite-dimensional polynomial representation space),

∮
Q
∂K h ≈ ∮∂K h, and h(U,U) = n̂ ⋅ f(U).

Success:

conservative

stable if ∆tλmaxA
2DV ≤ CFLstable

Problem: Cell averages can become negative, causing instability.
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Outflow capping

How do cell averages go negative?

Pick a mesh cell K . Look at evolution
of the cell integral.

Definitions
CU = ∫K U: cell content

B = ∮
Q
∂K : boundary sum

h(U−,U+, n̂): numerical
outgoing flux

Method of Lines says: d
dt CU = −Bh.

For an Euler step of length ∆t , the cell
average changes linearly with time:

CUn+1 = CU −∆tBh

Outflow capping guarantees positiv-
ity by directly limiting outflow:

CUn+1

∆t
∆tsafe ∆tzero ∆tstable

CU

30%CU

−Bh

Capping the outflow at αz = 70% gives:

∆t−1
zero =

Bh
CU

,

∆t−1
safe = max{(αz∆tzero)−1

,∆t−1
stable}
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DG/WENO method with outflow capping

Success:

(conservative)
(stable if ∆tλmaxA

2DV ≤ CFLstable)
positivity-preserving

Problem: safe time step can go to zero, causing the simulation to grind to a
halt.

Why?

E.A. Johnson (KU Leuven) Outflow positivity limiting October 18, 2012 9 / 40



Boundary crowding

One culprit is boundary crowding:

BU? = M?UM? = 3

B̂ U

5 BU

1

−1

U

Update of cell comes from:
1 initial cell average
2 values at boundary nodes

(proportional to potential outflow).

If the solution is not constrained by a
cell positivity condition, then the ratio
of cell outflow rate to cell average can
become arbitrarily large.

Key definitions:

BU ∶ boundary average

CU = U ∶ cell average

B̂(U) ∶= BU
CU

∶ boundary crowding
(ratio of boundary average to cell
average)

U⋆ ∶ positive solution with
maximum boundary crowding

M⋆ ∶ maximum boundary
crowding for a positive solution
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Boundary crowding (vs. max boundary crowding of a positive solution)

One culprit is boundary crowding:

BU? = M?UM? = 3

B̂ U

5 BU

1

−1

U= U?

Update of cell comes from:
1 initial cell average
2 values at boundary nodes

(proportional to potential outflow).

If the solution is not constrained by a
cell positivity condition, then the ratio
of cell outflow rate to cell average can
become arbitrarily large.

Key definitions:

BU ∶ boundary average

CU = U ∶ cell average

B̂(U) ∶= BU
CU

∶ boundary crowding
(ratio of boundary average to cell
average)
U⋆ ∶ positive solution with
maximum boundary crowding
M⋆ ∶ maximum boundary
crowding for a positive solution

Idea: cap the boundary crowding
by M⋆.

Let’s look at three ways. . .
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(1) Liu and Osher limiter (global positivity)

Liu and Osher damp the deviation from the cell average just enough to enforce positivity at every
point:

x

U

Ũ
U

Success:
(conservative)

preserves high-order accuracy

preserves positivity of the cell average if CFLpos ≤ W⋆ ∶= 1/M⋆.

Essentially guarantees the largest positivity-preserving time step we can hope for.

Problem: hard to find the minimum of a high-order polynomial, especially in multiple dimen-
sions.
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(2) Zhang and Shu limiter (positivity points)

Zhang and Shu damp the deviation from the cell average just enough to enforce positivity at posi-
tivity points:

x

U

Ũ

U

Let X be the set of positivity points.
Let MX be the maximum boundary crowding over solutions positive at each positivity point.

Success:
(conservative)
(preserves high-order accuracy)
preserves positivity if CFLpos ≤ W X ∶= 1/MX

W X = W⋆ if X is the set of optimal positivity points.
W X > 0 if X is rich enough (to be capable of representing the solution and if the cell average
can be represented as a strictly positive combination of values from X ).

Problem: what are the positivity points?
W X < W⋆ unless the optimal positivity points are included.
The optimal points can increase computational expense by requiring evaluation at points not
otherwise used in the DG scheme, particularly for high-order-accurate solutions.
Optimal points for boxes and simplices are unknown for high-order polynomials.
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(3) boundary average limiting

We damp the deviation from the cell average just enough to cap the boundary average BU at a
multiple M of the cell average U.

√
1/5

UR

U

−1 1

MU

U

BU

BUR

−1 1
√

1/5−
√

1/5

U?

U?M?U

U

BU?

Success:
(conservative)

preserves positivity for an Euler step if CFLpos ≤ W ∶= 1/M.

preserves high-order accuracy if M ≥ M⋆.

cheap: no need to evaluate at points not otherwise used in the DG scheme.

Problem: what is the maximum boundary average?

need an upper bound M on M⋆.
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(3) boundary average limiting (vs. positivity points)

We damp the deviation from the cell average just enough to cap the boundary average BU at a
multiple M of the cell average U.

UX

UR

U

−1 1
√

1/5

M?U

U

BU

BUX

BUR

−1 1
√

1/5−
√

1/5

U?

U?M?U

U

BU?

Success:
(conservative)

preserves positivity for an Euler step if CFLpos ≤ W ∶= 1/M.

preserves high-order accuracy if M ≥ M⋆.

cheap: no need to evaluate at points not otherwise used in the DG scheme.

Problem: what is the maximum boundary average?

need an upper bound M on M⋆.
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Boundary crowding: optimal positivity points and M⋆ values

For an interval:

cubic polynomial space:

−1 10

M?U? U?

U?

BU

M? = 3

k = 2, 3

quintic polynomial space:

−1 1−
√

1/5
√

1/5

M?U? U?

U?

BU

M? = 6

k = 4, 5

heptic polynomial space:

−1 1−
√

3/7
√

3/70

M?U? U?

U?

BU

M? = 10

k = 6, 7

The optimal boundary crowding cap is M⋆ = (n + 1)(n + 2)/2, where the representation space
is the polynomials of degree at most k = 2n or k = 2n + 1.
The polynomial U⋆ which maximizes the boundary crowding is zero at the optimal interior
points.
Enforcing positivity at the optimal interior points enforces the optimal boundary crowding cap.
The optimal positivity points are the Gauss-Lobatto quadrature points (for a correct rule with
the fewest points). See [ZhangShu10].

What about regular polytopes?. . .

(Recall definitions for a mesh cell:)
̂
B(U) ∶=

BU
U

: boundary crowding: (ratio of boundary average to cell average)

M⋆: optimal boundary crowding cap: maximum boundary crowding of a positive solution.

U⋆: boundary crowding maximizer: positive solution which maximizes ̂
B(U)
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Optimal positivity points and M⋆ values (key results)

k = 2, 3

M
?

= 2
M

?
= 1.6

k = 2, 3

For quadratic and cubic polynomials in a box, the set
of optimal positivity points is simply the cell center.

V = P2(x) · P2(y)

M
?

= 3

V = P3(x) · P3(y)

M
?

= 3

For tensor product polynomial spaces in a box,
[ZhangShu10] gives the optimal positivity points.

k = 2, M
?

= 2

M
?

= 1.6

k = 2

For quadratic polynomials in a simplex, the set of op-
timal positivity points is simply the cell center.

k = 3, M
?

= 2.2

M
?

= 1.83

k = 3

For cubic polynomials in a simplex, the optimal posi-
tivity points are the cell center and face centers.
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Definitions for common canonical mesh cells and representation spaces

What about polynomial representations higher than third-order?

Representation space:

Pk
D ∶= {polynomials in D variables of degree at most k} .

Canonical mesh cells:

M
k
[0,1] ∶= M⋆ for Pk

D for a unit interval

Mk
◯D ∶= M⋆ for Pk

D for a sphere

Mk
[0,1]D ∶= M⋆ for Pk

D for a box

Mk
△D ∶= M⋆ for Pk

D for a simplex.
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Bounds on M⋆ for boxes (key results)

For high-order polynomials we have calculated bounding intervals containing M⋆ for boxes:

k (polynomial order) ∶ 0,1 2,3 4,5 6,7 8,9 10,11
n = ⌊k/2⌋ ∶ 0 1 2 3 4 5
m = ⌊n/2⌋ ∶ 0 0 1 1 2 2

M
k
[0,1] =

(n+1)(n+2)
2 [ZhSh10] 1 3 6 10 15 21

Mk
◯2 = (m + 1) ⋅ ⌊ n+3

2 ⌋ 1 2 4 6 9 12

Mk
◯3 =

m+1
3 ⋅ (3 + 2⌊ n+1

2 ⌋) 1 1.6 3.3 4.6 7 9

Mk
[0,1]2 1 2 [3.5,4] [5.5,6] [8,9] [11,12]

Mk
[0,1]3 1 1.6 [2.6,3.3] [4,4.6] [5.6,7] [7.6,9]

More generally, we have the bounds

Ω(k2
) = Mk,−

[0,1]D ∶=
1+(D−1)Mk,−

[0,1]D−1

D ≤ M2n
[0,1]D = M2n+1

[0,1]D ≤ M2n
◯D = M2n+1

◯D =
(⌊ n

2 ⌋+1)(2⌊ n+1
2 ⌋+D)

D = Ω(k2
);

note that Mk,−
[0,1]1 = M

k
[0,1] =

(n+1)(n+2)
2 .
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Bounds on M⋆ for simplices (key results)

For high-order polynomials we have calculated bounding intervals containing M⋆ for simplices:

k (polynomial order) ∶ 0 1 2 3 4 5 6 7
n = ⌊k/2⌋ ∶ 0 0 1 1 2 2 3 3

Mk
△1 = M

k
[0,1] =

(n+1)(n+2)
2 1 1 3 3 6 6 10 10

Mk
△2 (≤ M

k
[0,1], see [ZXS12]) 1 1 2 2.2 [3.4,6] [3.5,6] [5+ 1

7 ,10] [5.25,10]

Mk
△3 (≤ n+1

3 (⌊ k+1
2 ⌋+3)) 1 1 1.6 1.83 [2.56,5] [2.6,6] [3+ 9

14 ,8] [3.75,9.3]

More generally, we have the bounds

Ω(k2
) = Mk,−

△D ∶= (
D + k

D
)
⎛
⎜
⎝

1 +D D−1
D+k−1 Mk,−

△D−1

1 +D

⎞
⎟
⎠
≤ Mk

△D ≤
(⌊ k

2 ⌋ + 1)(⌊ k+1
2 ⌋ +D)

D
= Ω(k2

);

note that Mk,−
△1 = M

k
[0,1] =

(n+1)(n+2)
2 .
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Outflow positivity limiting

Question: Why can these positivity limiting frameworks guarantee a minimum
positivity-preserving time step?

Answer: Because capping the boundary average caps the maximum rate
of outflow of material from the cell.

Outflow positivity limiting caps the amount of material that flows out of the
mesh cell by the amount of material in the mesh cell:

1 Outflow rate determines Euler time step that violates positivity:

1/∆tzero =
Bh
CU

= Bh
CU

, where h ∶= hA
V
.

2 Wave speed times solution caps outflow rate at a node:

h(U−,U+) ≤ λU−.

3 To cap cell outflow rate, cap boundary average and wave speeds:

Bh(U−,U+) ≤ λBU−.
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Capping outflow via wave speeds: h(U−,U+) ≤ λU−

Theorem
Let U−,U+ ≥ 0. Let the speed cap λ > 0 be an upper bound on the sum of the right-going signal
speed for the Riemann problem with states (0,U−) and the left-going signal speed for the
Riemann problem with states (U−,U+). Let h be a numerical flux function which preserves
positivity for a step of the Godunov method if the time step is short enough that signals do not
cross.

Then h(U−,U+) ≤ λU−.

Proof: Consider the 1D problem

∂t u + ∂x f(u) = 0, u(0, x) =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

0 if x < 0,
U− if 0 < x < ∆x ,
U+ if ∆x < x ,

where U−,U+ ≥ 0, ∆x ∶= λ∆t , and f ∶= u ↦ n̂ ⋅ f(t ,x,u). Suppose that for any U−,U+ ≥ 0 an Euler
update maintains positivity: (U−)n+1 = U− − ∆t

∆x [h(U−,U+) − h(0,U−)] ≥ 0. Since material cannot
flow out of a vacuum, h(0,U−) ≤ 0. Therefore, h(U−,U+) ≤ ∆x

∆t U− = λU−, as desired.

x

u(0, x)

u(∆t, x)

uHLL(∆t, x)

(U−)n+1
HLL0 ∆xs+0

s−0 = S+S− s− s+

U−

U+
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Definitions for outflow analysis:

We define all quantities in the coordinates of a single canonical mesh
cell K (so results go through for isoparametric mesh cells).

BU ∶= ∮
Q
∂K U− boundary integral quadrature

CU ∶= ∫K U cell integral

λ twice cap on speeds at boundary nodes

h numerical flux (h ≈ f ⋅ n̂)

E.A. Johnson (KU Leuven) Outflow positivity limiting October 18, 2012 24 / 40



Retentional positivity limiting

Theorem (Retentional positivity guarantees a positivity-preserving time step.)
Given:

h ≤ λU− (numerical flux is bounded via the speed cap λ),

λ∆t ≤ W (step length is bounded via W), and

WBU ≤ CU (boundary crowding is capped by M ∶= W−1).

Then: The loss is at most the cell content.

Proof:

loss = ∆tBh ≤ λ∆tBU ≤ WBU ≤ CU.

Remarks:
Define the retentional R ∶= CU −WBU

R equals the material retained if the maximum possible loss occurs.
R is a linear functional.

Enforcing positivity of R does not compromise accuracy:
ifR is positive for all U positive in K , i.e.,
if M ≥

BU
CU for all nonzero solutions U positive in K .
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Retentional positivity limiting (invariant version)

Theorem (Retentional positivity guarantees a positivity-preserving time step.)
Given:

h ≤ λU− (numerical flux is bounded via the speed cap λ),

λ∆t ≤ W (step length is bounded via W), and

WBU ≤ CU (boundary crowding is capped by M ∶= W−1).

Then: The loss is at most the cell content.

Proof:

loss = ∆tBh ≤ λ∆tBU ≤ WBU ≤ CU.

Remarks:
Define the retentional R ∶= CU −WBU

R equals the material retained if the maximum possible loss occurs.
R is a linear functional.

Enforcing positivity of R does not compromise accuracy:
ifR is positive for all U positive in K , i.e.,
if M ≥

BU
CU

for all nonzero solutions U positive in K .
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Definitions (scale-invariant):

Results are independent of the scale of the canonical mesh cell if we use scale-invariant definitions:

BU ∶= A−1
BU boundary averaging quadrature

CU ∶= V−1
CU cell average

λ ∶=
λA
V

scaled speed cap

h ∶=
hA
V

scaled numerical flux

V volume of cell

A area of boundary
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Definitions (affine-invariant):

Results are invariant under affine transformations of the canonical mesh cell if we use affine-
invariant definitions:

BU arithmetic average over all faces of averaging quadrature on each face

CU cell average

λe ∶=
λNdAe

V
scaled speed cap at node xe

he ∶=
hNdAe

V
scaled numerical flux at node xe

V volume of cell K

dAe area of face of node xe

N number of faces

These definitions are designed to agree with the scale-invariant definitions for a regular polytope.
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Systems case reduces to the scalar case

In the systems case,

∂t u(t ,x) +∇ ⋅ f(t ,x,u) = 0,

assume that positivity of the state u is defined by positivity of Λu for all Λ in a collection of linear
functionals. (Equivalently, the set of positive states P is a convex cone.) All statements made so
far go through to the systems case after applying any Λ to both sides of the equation or inequality.

Caveats:
1 Wave speeds may need to be desingularized. Outflow rate limiting requires a finite cap on

wave speeds. Enforcing positivity of the depth (shallow water) or density (gas dynamics)
generically results in near-infinite wave speeds. A fix is to calculate fluxes with remapped
states that diminish fluid speed and temperature to physically justified maxima.

2 Positivity indicators are needed. For gas dynamics, Λ comes from an infinite collection of
linear functionals: the energy density in all possible reference frames. To test positivity
computationally, use a finite set of state positivity indicators: density (linear) and pressure
(concave).

3 Accuracy can be lost if the pressure is not strictly bounded away from zero. For gas
dynamics, positivity limiting can diminish the order of accuracy. For example, enforcing
positivity of the pressure can result in arbitrarily large damping of density variation.
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Positivity limiting for systems

Positivity limiting requires determining where a
linear path in state space intersects the bound-
ary of positive states:

energy (per mass)

velocity

pr
es

su
re

=
0

E vp
=

0

vp

(θ=0)

(θ = θp)

(θ=1)

u

u+ θpdu

u+ du

Need positivity of energy in every reference
frame (an infinite collection of linear functionals).

Instead use a finite set of nonlinear positivity in-
dicators.

Gas-dynamic positivity indicators:

ρ is linear

p is concave if ρ > 0.
ρp
γ−1 = ρE −m2/2 is quadratic.

0
θ

1θp
p

p

p

ρ

ρp

p(θ)

ρ(θ)

ρp
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Positivity limiting for systems (for a cell positivity “linear functional” R)

Positivity limiting requires determining where a
linear path in state space intersects the bound-
ary of positive states:

energy (per mass)

velocity

pr
es

su
re

=
0

E vp
=

0

vp

(θ=0)

(θ = θp)

(θ=1)

RU

RU + θpRdU

RU +RdU

Need positivity of energy in every reference
frame (an infinite collection of linear functionals).

Instead use a finite set of nonlinear positivity in-
dicators.

Gas-dynamic positivity indicators:

ρ is linear

p is concave if ρ > 0.
ρp
γ−1 = ρE −m2/2 is quadratic.

0
θ

1θp
p

p

p

ρ

ρp

p(θ)

ρ(θ)

ρp
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Positivity limiting for systems (outflow capping)

Positivity limiting requires determining where a
linear path in state space intersects the bound-
ary of positive states:

energy (per mass)

velocity

pr
es

su
re

=
0

E vp
=

0

vp

(θ=0)

(θ = θp)

(θ=1)

CU

CU + θp∆tBh
CU + ∆tBh

Need positivity of energy in every reference
frame (an infinite collection of linear functionals).

Instead use a finite set of nonlinear positivity in-
dicators.

Gas-dynamic positivity indicators:

ρ is linear

p is concave if ρ > 0.
ρp
γ−1 = ρE −m2/2 is quadratic.

0
θ

1θp
p

p

p

ρ

ρp

p(θ)

ρ(θ)

ρp
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Positivity limiting for systems (secant shortcut – see [WZSN11])

Positivity limiting requires determining where a
linear path in state space intersects the bound-
ary of positive states:

energy (per mass)

velocity

pr
es

su
re

=
0

E vp
=

0

vp

(θ=0)

(θ = θp)

(θ=1)

CU

CU + θp∆tBh

(θ = θs)

CU + ∆tBh

Need positivity of energy in every reference
frame (an infinite collection of linear functionals).

Instead use a finite set of nonlinear positivity in-
dicators.

Gas-dynamic positivity indicators:

ρ is linear

p is concave if ρ > 0.
ρp
γ−1 = ρE −m2/2 is quadratic.

0
θ

1θp
p

p

p

ρ

ρp

p(θ)

ρ(θ)

ρp

θs
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Prescriptions for implementation: efficiency and stability

Enforce positivity at boundary nodes.
In addition to enforcing positivity of the retentional, enforce positivity at the boundary
quadrature points so that numerical fluxes are computed using positive states.

Enforce positivity at nodal points to efficiently improve stability.
Since values used in volume and boundary quadratures must be calculated (or available)
anyway, positivity of these values can be efficiently enforced, with the added benefit that
positivity of all states actually used in computation is assured.

Check positivity efficiently.
Use interval arithmetic to inexpensively confirm cell positivity in the vast majority of mesh
cells. For nodal DG, choose positivity points to be nodal points to avoid additional
computational expense. Precompute the boundary average of each polynomial basis function
to efficiently evaluate the retentional.

Cap outflow to estimate an optimal time step.
One can directly calculate the maximum stable time step for which an Euler step maintains
positivity of the cell average. For multistage and local time stepping, one can maintain and
iteratively adjust an estimate of a safe time step that is both stable and positivity-preserving.
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Prescriptions for implementation: canonical regular polytope

Use an affine-invariant definition of the boundary average.
The values of M⋆ given here assume a regular simplex or box. If using a canonical simplex
which is not regular, then for the retentional R ∶= MC − B, define B to be the arithmetic
average over all faces of the average on each face.

Work in canonical coordinates.
When working with isoparametric mesh cells, work in canonical coordinates, where the mesh
cell is a simplex or box and the representation space is Pk

D or a tensor product polynomial
space, so that the optimal positivity points and retentional given here can be used without
modification.
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Prescriptions for implementation: shallow water and gas dynamics

Use wave speed desingularization for systems, especially for shallow water.
When enforcing positivity of depth (shallow water) or density (gas dynamics), fluxes need to
be calculated with remapped states in order to desingularize wave speeds. In primitive
variables one can simply damp temperature and fluid speed to enforce a physically justified
cap estimated e.g. via a first-order solver invoked where desingularization may be needed.

Enforce positivity of the density, then the pressure.
For gas dynamics, first apply linear damping to enforce positivity of the density. Then apply
linear damping to the state to enforce positivity of the pressure p. Note that, as a function of
the state variables, ρp = (γ − 1) (ρE −M2/2) is quadratic and p is concave (if ρ > 0), allowing
one to enforce positivity of p by solving a quadratic or linear polynomial equation. See
[ZhangShu10].

Pad inequalities.
To guard against error in machine arithmetic, enforce ρ ≥ ερ or p ≥ εp for some small ερ > 0
and εp > 0.
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Prescriptions for implementation: higher-moment positivity limiting

Use linear damping to maintain positive-definiteness of the pressure tensor.

Positive-definiteness of the pressure tensor can be enforced in a manner similar to positivity
of the pressure: First enforce positivity of the density. Then enforce positivity of the pressure
tensor. Use that: (1) as a function of the state variables, ρP = ρE −MM is quadratic and
n̂ ⋅P ⋅ n̂ is concave for any n̂ (if ρ > 0); and (2) P > 0 iff trP > 0, tr adjP > 0, and detP > 0.

Use remapping to project states into the the interior of the domain of hyperbolicity or
realizability.

The invariant domain of some 13-moment models is not convex. Use positivity limiters to keep
the solution physically realizable (a convex superset). Then damp heat flux to project the cell
average and other states into the invariant domain while preserving mass, momentum, and
energy. (This does not violate physical constraints, since collisions do not conserve heat flux.)

Singularities may occur on the boundary of the domain of hyperbolicity or realizability. So
characterize the singular states on the boundary via scalars that become infinite there and
use justified caps on these scalars to project into the interior of the domain of positive states.
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Conclusions

Outflow positivity limiting allows cheap, positivity-preserving,
high-order-accurate DG/WENO.

Outflow positivity limiting consists of three essential parts:
1 Cap outflow

(maintains positivity),
2 Cap boundary averages

(guarantees a minimum positivity-preserving time step), and
3 Cap wave speeds

(guarantees a minimum stable time step).

Given a speed cap, boundary average capping can guarantee the same
minimum positivity-preserving time step as does enforcing positivity
everywhere in each mesh cell.

Positivity limiting makes higher-moment gas models robust.
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