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1 Two-fluid nondiffusive plasma equations.

We wish to develop an efficient algorithm to model a collisionless two-fluid plasma. We want
this algorithm to be conservative (so that shocks will move at the physically correct speed),
high resolution (meaning second-order convergence for smooth solutions, avoiding unphysical
oscillations near shocks, and avoiding excessive smearing near shocks), and h-adaptive (mean-
ing that the mesh size adapts to resolve features or regimes of interest). In regions where we are
not interested in resolving high-speed waves we wish to take a larger time step.

2 Strategy.

We intend to use operator splitting to decouple the modeling of the flux and source terms for
the gas-dynamic and electromagnetic evolution equations.

In particular, we expect our solver to consist of the following components:

1. A finite-volume high-resolution approximate Riemann solver for the hyperbolic flux term
of each fluid.

2. An implicit PDE solver to solve the advection component of Maxwell’s equations which
posseses the following properties:

(a) High-order accurate when solutions are smooth.

(b) Ability to take a large time step (in regions where we don’t wish to resolve fast waves).
(So this will probably need to be an implicit method, at least for multiple dimensions
of space.)

(c) Close to TVD (It’s not possible for a method that satisfies the first two properties to
fully achieve TVD, but we can get close; perhaps we can achieve TVB using limiters
– WENO.)

3. An implicit second-order accurate ODE solver for the source terms.

(a) An implicit second-order accurate ODE solver for the effect of the source term on the
currents and electric field

(b) A second-order update of the effect of the source terms on the energies based on the
currents and electric field computed by the previous solver.

4. Some means of enforcing the divergence condition for the electric field.
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3 System of equations to be solved.

The collisionless plasma equations consist of the Euler gas dynamics equations with a Lorentz
source term for each of the two species (electrons and ions) coupled with Maxwell’s equations
for the evolution of electromagnetic field.

3.1 Definition of quantities.

To discuss the equations we wish to solve, we
define the following quantities:

3.1.1 Independent variables.

t = time
x = position

3.1.2 Particle properties.

s = species index (i for ion, e for electron)
qs = charge of a particle
ms = mass of a particle

3.1.3 Gas-dynamic quantities.

ns = particle number density

ρs = msns = mass density
vs = fluid velocity
Ms = (ρsvs) = momentum
p = pressure
E = gas-dynamic energy

3.1.4 Electromagnetic quantities.

σs = qsns = charge density
σ =

∑
s σs = net charge density

Js = σsvs = qsnsvs = current (charge
flux)
J =

∑
s Js = net current

B = magnetic field
B̃ = cB = rescaled magnetic field
E = electric field

3.2 Constitutive relations.

p = (γ − 1)(E − 1

2
ρv2)

3.3 Two-fluid plasma equations

The gas-dynamics equations are:

∂t




ρs

ρsvs

Es



 + ∇ ·




ρsvs

ρsvsvs + ps δ

vs

(
Es + ps

)



 =




0

σsE + Js × B

Js · E





where ps = (γ − 1)(Es −
1

2
ρsv

2
s) and σs =

qs

ms

ρs and Js =
qs

ms

ρsvs
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Written in conserved variables:

∂t




ρs

Ms

Es





︸ ︷︷ ︸
conserved

+∇ ·




Ms
MsMs

ρs
+ ps δ

Ms

ρs

(
Es + ps

)




︸ ︷︷ ︸
hyperbolic flux

=




0

qs

ms
(ρsE + Ms × B)

qs

ms
Ms · E





︸ ︷︷ ︸
electromagnetic source

where ps = (γ − 1)
(
Es −

M2
s

2ρs

)

Maxwell’s evolution equations with constraints are:

∂t

[
B̃

E

]
+ c∇×

[
E

−B̃

]
=

[
0

− 1

ε0
J

]
and ∇ ·

[
B̃

E

]
=

[
0
1

ε0
σ

]
,

where J = Ji + Je =
qi

mi

Mi +
qe

me

Me

and σ = σi + σe =
qi

mi

ρi +
qe

me

ρe

3.4 Nondimensionalization.

3.4.1 Characteristic values.

Following Shumlak and Loverich [1], we nondi-
mensionalize by using the following character-
istic variables:

• x0 = typical length scale (???FIX)
• v0 = typical thermal velocity of an ion
• n0 = typical number density
• B0 = typical magnetic field strength
• mi = mass of an ion
• q0 = charge strength of an ion or electron

Write X = X0X̂ for each variable X, where
X0 represents the characteristic value and X̂
is the nondimensionalized variable. Our funda-
mental choices of characteristic quantities im-

ply the following characteristic values.

ms = m0m̂s where m0 = mi

and m̂s =

{
1 if s = i
me

mi
if s = e

qs = q0q̂s where q0 = e

and q̂s =

{
1 if s = i
−1 if s = e

t = t0t̂ where t0 = x0

v0

ρs = ρ0ρ̂s where ρ0 = min0

σs = σ0σ̂s where σ0 = q0n0

Js = J0Ĵs where J0 = q0n0v0

ps = p0p̂s where p0 = ρ0v
2
0 = m0n0v

2
0

Es = E0Ês where E0 = p0

E = E0Ê where E0 = B0v0

Define ∇̂ := ∇bx.

3.4.2 Density and Momentum variables.

We obtain the nondimensionalized equations by making the substitution Xs = X0X̂s for each
variable X in the equations and then dividing to put all the characteristic values on the right
side of the equation. When the dust settles, the net result of this is to replace every variable
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with its corresponding hatted variable and to put a multiplicative factor consisting of the inverse
of the nondimensionalized Larmor radius on the right side of the gas-dynamics equations:

∂t




ρ̂s

M̂s

Ês



 + ∇ ·




M̂s
cMs

cMs

bρs
+ p̂s δ

cMs

bρs

(
Ês + p̂s

)


 =

1

r̂L




0
bqs

bms
(ρ̂sÊ + M̂s × B̂)

bqs

bms
M̂s · Ê




where p̂ = (γ − 1)
(
Ê −

M̂2

2ρ̂

)

Here rL := m0v0

q0B0
is the Larmor radius, the radius of curvature of the circular oscillation of

a charge with characteristic values of mass and charge moving at the characteristic velocity
perpendicular to the characteristic magnetic field. We define r̂L := rL

x0
= m0v0

q0B0x0
.

Writing out the full system of gas dynamics with both species, and using that q̂i = 1, q̂e = −1,
m̂i = 1, and m̂e = me

mi
the system of equations that we must solve is:

∂t




ρ̂i

ρ̂e

M̂i

M̂e

Êi

Êe




+ ∇ ·




M̂i

M̂e
cMi

cMi

bρi
+ p̂i δ

cMe
cMe

bρe
+ p̂e δ

cMi

bρi

(
Êi + p̂i

)

cMe

bρe

(
Êe + p̂e

)




=
1

r̂L




0
0

ρ̂iÊ + M̂i × B̂

−mi

me
(ρ̂eÊ + M̂e × B̂)

M̂i · Ê

−mi

me
M̂e · Ê




p̂i = (γi − 1)
(
Êi −

M̂2
i

2ρ̂i

)
and p̂e = (γe − 1)

(
Êe −

M̂2
e

2ρ̂e

)

Maxwell’s equations become:

∂bt

[ ̂̃
B

Ê

]
+ ĉ∇̂ ×

[
Ê

−
̂̃
B

]
=

1

λ̂2
Dr̂L

[
0

−Ĵ

]
and ∇̂ ·

[ ̂̃
B

Ê

]
=

1

λ̂2
Dr̂L

[
0
σ̂

]
,

where Ĵ = Ĵi + Ĵe = M̂i −
mi

me

M̂e

and σ̂ = σ̂i + σ̂e = ρ̂i −
mi

me

ρ̂e

Here λD :=

√
ε0m0v2

0

n0q2

0

is the Debye length, which is the distance scale over which electrons screen

out electric fields in plasmas (i.e. the distance scale over which significant charge separation can
occur). (Recall that for an ideal gas, the mean translational kinetic energy is 1

2
mv2 = 3

2
kT ,

where k is the Boltzmann constant and T is the temperature, so the electron and ion Debye
lengths are equal for equal ion and electron temperatures.) We define λ̂D as the ratio of the

Debye length to the ion Larmor radius: λ̂2
D :=

λ2

D

rL
=

ε0B2

0

n0m0
. Note that λ̂2

Dr̂L = ε0B0v0

n0q0x0
.

3.4.3 Number density and current variables

We can also rewrite equations as conservation laws for number density and current, rather than
mass density and momentum. We use the relations ρs = msns and Ms = ms

qs
Js. We multiply
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the conservation of mass equation by 1

ms
. We multiply the conservation of momentum equation

by qs

ms
.

The gas-dynamics equations become:

∂t




ns

Js

Es





︸ ︷︷ ︸
conserved

+∇ ·




Js

qs

JsJs

qsns
+ qs

ms
ps δ

Js

qsns

(
Es + ps

)




︸ ︷︷ ︸
hyperbolic flux

=




0

qs

ms

(
qsnsE + Js × B

)

Js · E





︸ ︷︷ ︸
electromagnetic source

where ps = (γ − 1)
(
Es −

1

2

ms

q2
s

J2
s

ns

)

Writing out the full system with both species, and using that q̂i = 1, q̂e = −1, m̂i = 1, and
m̂e = me

mi
, the system of equations that we must solve is:

∂bt




n̂i

n̂e

Ĵi

Ĵe

Êi

Êe




+ ∇̂ ·




Ĵi

−Ĵe
bJi

bJi

bni
+ p̂i δ

−
bJe

bJe

bne
− mi

me
p̂e δ

(p̂i + Êi)
bJi

bni

−(p̂e + Êe)
bJe

bne




=
1

r̂L




0
0

n̂iÊ + Ĵi × B̂
mi

me
(n̂eÊ − Ĵe × B̂)

Ĵi · Ê

Ĵe · Ê




where p̂i = (γi − 1)
(
Êi −

1

2

Ĵ2
i

n̂i

)
and p̂e = (γe − 1)

(
Êe −

1

2

me

mi

Ĵ2
e

n̂e

)
;

Maxwell’s equations are:

∂bt

[ ̂̃
B

Ê

]
+ ĉ∇̂ ×

[
Ê

−
̂̃
B

]
=

1

r̂L

[
0

−1

bλ2

D

Ĵ

]
and ∇̂ ·

[ ̂̃
B

Ê

]
=

1

r̂L

[
0
1

bλ2

D

σ̂

]
,

where Ĵ = Ĵi + Ĵe and σ̂ = σ̂i + σ̂e = n̂i − n̂e.
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4 Numerical solver without divergence constraint enforcement.

Our approach to solving this system of equations is to use operator splitting. We plan to develop
second-order solvers for each of the following equations:

4.1 Gas-dynamics

∂bt




n̂i

n̂e

Ĵi

Ĵe

Êi

Êe




+ ∇̂ ·




Ĵi

−Ĵe
bJi

bJi

bni
+ p̂i δ

−
bJe

bJe

bne
− mi

me
p̂e δ

(p̂i + Êi)
bJi

bni

−(p̂e + Êe)
bJe

bne




= 0

We plan to use a standard explicit finite-volume
shock-capturing method, such as a Roe solver
with higher-order corrections.

4.2 ODE solver for source terms.

4.2.1 Interdependent source term ODE solver.

∂bt



Ĵi

Ĵe

Ê


 =

1

r̂L




n̂iÊ + Ĵi × B̂
mi

me
(n̂eÊ − Ĵe × B̂)

−1

bλ2

D

Ĵ




Due to the operator splitting, we can take this as an ODE with constant coefficients. The
eigenvalues of this ODE are imaginary, so we intend to use the TR-BDF2 method. It is an
implicit 2-stage Runge-Kutta method based on taking a half time-step with the Trapezoidal
rule and then a half step with the 2-step BDF (Backward Differentiation Formula) method:

U∗ = Un +
k

4
(f(Un) + f(U∗))

3Un+1 − 4U∗ + Un = kf(Un+1).

4.2.2 Dependent source term ODE solver

∂bt

[
Êi

Êe

]
=

1

r̂L

[
Ĵi · Ê

Ĵe · Ê

]
A second-order ODE solver for each of these
energy variables is:

Ên+1 − Ên

∆t
=

(Ĵ · Ê)n + (Ĵ · Ê)n+1

2r̂L
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4.3 Maxwell’s advection solver.

∂bt

[ ̂̃
B

Ê

]
+ ĉ∇̂ ×

[
Ê

−
̂̃
B

]
= 0

This is a hyperbolic system with constant coefficients.

4.3.1 Maxwell advection solver in one dimension.

Consider the one-dimensional case where all
quantities depend only on x := x1. Then this
system becomes:

∂t




B̃1

B̃2

B̃3

E1

E2

E3




+ c∂x




0
−E3

E2

0

cB̃3

−cB̃2




︸ ︷︷ ︸
flux

= 0

i.e.

∂t




B̃1

B̃2

B̃3

E1

E2

E3




+




0 0 0 0 0 0
0 0 0 0 0 −c
0 0 0 0 c 0
0 0 0 0 0 0
0 0 c 0 0 0
0 −c 0 0 0 0




︸ ︷︷ ︸
flux jacobian




B̃1

B̃2

B̃3

E1

E2

E3




x

= 0

This flux jacobian has eigenvalues

λ1 = λ2 = −c

λ3 = λ4 = 0

λ5 = λ6 = c

with corresponding right eigenvectors

[
r1 r2 r3 r4 r5 r6

]
=




0 0 0 1 0 0
1 0 0 0 −1 0
0 −1 0 0 0 1
0 0 1 0 0 0
0 1 0 0 0 1
1 0 0 0 1 0




and left eigenvectors




l1

l2

l3

l4

l5

l6




=




0 0 0 1 0 0
1 0 0 0 0 0
0 1

2
0 0 0 1

2

0 0 −1

2
0 1

2
0

0 −1

2
0 0 0 1

2

0 0 1

2
0 1

2
0




5 Divergence constraints.

Rewrite Maxwell’s equations as:

∂bt

[ ̂̃
B

Ê

]
+ ĉ∇̂ ×

[
Ê

−
̂̃
B

]
=

1

ε

[
0

−Ĵ

]
and ∇̂ ·

[ ̂̃
B

Ê

]
=

1

ε

[
0
σ̂

]
,

where ε := λ̂2
Dr̂L serves as a pseudo-permittivity.
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Taking the divergence of the evolution equation gives:

∂bt∇̂ ·

[ ̂̃
B

Ê

]
= ∂bt

1

ε

[
0
σ̂

]
,

So if the divergence constraint is initially satisfied, it will continue to be satisfied by an exact
solution, but a numerical solution is liable to drift from satisfying this constraint, resulting in
unphysical solutions.

5.1 Potential formulation.

To ensure that the divergence constraint remains satisfied, we prefer to use a potential formula-
tion of Maxwell’s equations. We use the homogeneous Maxwell’s equations to define potentials:
Since ∇ · B = 0, we can write B = ∇× A. Substituting this into ∇× E + ∂tB = 0 (Faraday’s
law) gives ∇×(E+∂tA) = 0. So we can write E+∂tA = −∇φ. Now we substitute the potential
representations

B = ∇× A

E = −∇φ − ∂tA

into the nonhomogeneous Maxwell’s equations to obtain evolution equations for the potentials:

−
σ

ε
= −∇ · E = ∇ · (∇φ + ∂tA)

J

ε
= −∂tE + c2∇× B = ∂t(∇φ + ∂tA) + c2∇×∇× A

i.e.

−
σ

ε
= ∇2φ + ∂t∇ · A

J

ε
= ∂ttA − c2∇2A + ∇(∂tφ + c2∇ · A)

Now consider the imposition of the generic gauge condition ∇ · A = D. Maxwell’s equations
become:

−
σ

ε
= ∇2φ + ∂tD

J

ε
= ∂ttA − c2∇2A + ∇(∂tφ + c2D)

5.1.1 Numerical drift from gauge condition.

If the numerical solution drifts from satisfying the gauge condition, solutions will become un-
physical. What drift can we expect? Subtracting the time derivative of the first equation from
the divergence of the second equation and using conservation of charge, ∂tσ +∇ · J = 0, we get:

0 = ∂tt(∇ · A − D) − c2∇2(∇ · A − D)

The error obeys the wave equation, so we don’t expect it to accumulate in one place.
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5.1.2 Satisfying initial and gauge conditions.

How do we determine the initial conditions for the potential formulation? Assume that we
are given initial conditions B0,E0,J0, and σ0, and that D0 and (∂tD)0 are also given. It is
necessary to ensure that the gauge condition holds initially. So we need the potential to satisfy
the following conditions at time 0:

∇ · A = D

∇× A = B

This is the general problem of finding the unique vector field which decays at infinity and has
given curl and divergence. To obtain the solution, seek A = ∇ × α + ∇ · β. Substituting into
the conditions and imposing the requirement that ∇ · α = 0, we find that we need:

∇2β = D

∇2α = −B

There exist unique such α and β, and such A has the required properties.

So we can compute A0 from B0 and D0. We also need initial conditions (∂tA)0, which must
satisfy:

∇× ∂tA = −∇× E

∇ · ∂tA = ∂tD

So we can get these from E0 and (∂tD)0.

5.1.3 Lorentz gauge.

We impose the Lorentz gauge condition: D = − 1

c2
∂tφ. Then Maxwell’s equations become:

σ

ε
=

1

c2
∂ttφ −∇2φ

J

ε
= ∂ttA − c2∇2A

To ensure that the initial and gauge conditions are satisfied, we need:

∇ · A0 =
−1

c2
(∂tφ)0

∇× A0 = B0

∇× (∂tA)0 = −∇× E0

∇ · (∂tA)0 = (
−1

c2
∂ttφ)0 = −

(
∇2φ +

σ

ε

)

0

There is still freedom in these conditions. We can require φ0 = 0 = (∂tφ)0. This gives (∂tA)0 =
−E0.
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So we have rewritten Maxwell’s equations in the form:

1

ε

[
cσ
J

]
= ∂tt

[
φ/c
A

]
− c2∇2

[
φ/c
A

]
with initial conditions:

[
φ/c
A

]

0

=

[
0

−∇−2∇× B0

]
and

(
∂t

[
φ/c
A

])

0

=

[
0

−E0

]

We can simplify the notation a little by defining the components of the 4-vector potential Aµ,
the current density 4-vector Jµ, and its rescaled cousin J̃µ:

Aµ :=

[
φ/c
A

]
, Jµ :=

[
cσ
J

]
, and J̃µ :=

1

ε
Jµ.

Thus ∂ttA
µ − c2∇2Aµ = J̃µ.

Note that the components of Aµ evolve independently; µ is a free index.

5.1.4 The wave equation as a first-order sytem.

The potential formulation of Maxwell’s equations with the Lorentz gauge is a wave equation.
We can recast it as a first-order system by writing evolution equations for the derivatives of the
potential. (Since the electric and magnetic field are defined in terms of the derivatives of the
potential, this is precisely all we need.) Make the following definitions:

x0 := t

∂ν := ∂xν

Wµ
ν := c∂νA

µ

We adopt the convention that latin indices assume values in {1, 2, 3} (spacial indices), and Greek
indices assume values in {0, 1, 2, 3} (space-time indices). We invoke the summation convention
for repeated indices. We also make the convenient definitions:

V µ := Wµ
0

= ∂tA
µ and

Wµ := c∇Aµ (i.e. Wµ
i := c∂xiAµ).

We can recover the electromagnetic field from the potential derivatives Wµ
ν by the relations:

Bi = [∇× A]i = εij
k∂jA

k

so cBi = εij
kW

k
j

and

Ei = [−∇φ − ∂tA]i = −∂iφ − ∂tA
i = −c∂iA

0 − ∂tA
i

= −W 0
i − W i

0 = −W 0
i − V i

(using that the spatial part of the metric tensor is the identity).

The wave equation and equality of mixed partials give us a first-order hyperbolic system with a
source term.

∂t

[
V µ

Wµ

]
− c∇ ·

[
Wµ

V µδ

]
=

[
J̃µ

0

]
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The initial conditions are:
[

V 0

W0

]

0

=

[
∂tA

0

c∇A0

]

0

=

[
∂tφ/c
∇φ

]

0

= 0 and

[
V i

Wi

]

0

=

[
∂tA

i

c∇Ai

]

0

=

[
−Ei

0

−∇∇−2[∇× (cB0)]
i

]

0

Writing the wave equation out in components:




Wµ

0

Wµ

1

Wµ

2

Wµ

3




t

−




0 c 0 0
c 0 0 0
0 0 0 0
0 0 0 0







Wµ

0

Wµ

1

Wµ

2

Wµ

3




x1

−




0 0 c 0
0 0 0 0
c 0 0 0
0 0 0 0







Wµ

0

Wµ

1

Wµ

2

Wµ

3




x2

−




0 0 0 c
0 0 0 0
0 0 0 0
c 0 0 0







Wµ

0

Wµ

1

Wµ

2

Wµ

3




x3

=




J̃µ

0
0
0




5.1.5 Full system with potential formulation.

Using the potential formulation for Maxwell’s equations, the full system becomes:

∂bt




n̂i

n̂e

Ĵi

Ĵe

Êi

Êe

V̂ µ

Ŵµ




+ ∇̂ ·




Ĵi

−Ĵe
bJi

bJi

bni
+ p̂i δ

−
bJe

bJe

bne
− mi

me
p̂e δ

(p̂i + Êi)
bJi

bni

−(p̂e + Êe)
bJe

bne

−ĉŴµ

−ĉV̂ µδ




=
1

r̂L




0
0

n̂iÊ + Ĵi × B̂
mi

me
(n̂eÊ − Ĵe × B̂)

Ĵi · Ê

Ĵe · Ê
1

bλ2

D

Ĵµ

0




with initial conditions:[
V 0

W0

]

0

= 0 and

[
V i

Wi

]

0

=

[
−Ei

0

−∇∇−2[∇× (cB0)]
i

]

0

with constitutive relations:

p̂i = (γi − 1)
(
Êi −

1

2

Ĵ2
i

n̂i

)

p̂e = (γe − 1)
(
Êe −

1

2

me

mi

Ĵ2
e

n̂e

)
;

and with defining relations:

Ĵµ =

[
ĉ σ̂

Ĵ

]

Ĵ = Ĵi + Ĵe

σ̂ = σ̂i + σ̂e = n̂i − n̂e

Bi = εij
kW

k
j

E = −W0 − V

11



6 Numerical solver with divergence constraint enforcement.

To solve the full system with the potential formulation of Maxwell’s equations, we can use the
same gas-dynamics solver, but we need a different ODE solver for the interdependent source
term, and we need a solver for the homogeneous part of the wave equation governing the com-
ponents of the electromagnetic potential (rather than a solver for the homogeneous part of
Maxwell’s evolution equations).

6.1 ODE solver for source terms.

6.1.1 Interdependent source term ODE solver.

∂bt



Ĵi

Ĵe

V̂


 =

1

r̂L




n̂iÊ + Ĵi × B̂
mi

me
(n̂eÊ − Ĵe × B̂)

1

bλ2

D

Ĵ




where:

Ĵ = Ĵi + Ĵe

E = −W0 − V

The only difference between this ODE and the ODE without the divergence constraint enforce-
ment is that it is not homogeneous; there is a constant forcing term.
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