p962 #34. Find parametric equations for the line tangent to the helix

$$\vec{r}(t) = \begin{pmatrix} \sqrt{2}\cos t \\ \sqrt{2}\sin t \\ t \end{pmatrix}$$
 at $t = \frac{\pi}{4}$

Solution:

$$\vec{r}(t) \simeq \underbrace{\vec{r}(t_0) + \vec{r}'(t_0)(t - t_0)}_{\mbox{general formula}} =: L$$
general formula
for tangent line
at t_0 in paramete t .

$$\vec{r}'(t) = \begin{pmatrix} -\sqrt{2}\sin t \\ \sqrt{2}\cos t \\ 1 \end{pmatrix}$$
$$\vec{r}'\left(\frac{\pi}{4}\right) = \begin{pmatrix} -1\\1\\1 \end{pmatrix}, \qquad \vec{r}\left(\frac{\pi}{4}\right) = \begin{pmatrix} 1\\1\\\frac{\pi}{4} \end{pmatrix}$$

So the tangent line has parametrization

$$L = \begin{pmatrix} -1\\1\\1 \end{pmatrix} + \left(t - \frac{\pi}{4}\right) \begin{pmatrix} 1\\1\\\frac{\pi}{4} \end{pmatrix}.$$

Change the parametrization: let $\tilde{t} = t - \frac{\pi}{4}$. Then

$$L = \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} + \tilde{t} \begin{pmatrix} 1 \\ 1 \\ \frac{\pi}{4} \end{pmatrix}, \text{ i.e.}$$

$$x(\tilde{t}) = -1 + \tilde{t},$$

$$y(\tilde{t}) = 1 + \tilde{t},$$

$$z(\tilde{t}) = 1 + \tilde{t} \frac{\pi}{4}.$$

p963 #3. A frictionless particle P starts from rest at time t=0 at point (a,0,0), and slides down the helix

$$\vec{r}(\theta) = \begin{pmatrix} a\cos\theta\\ a\sin\theta\\ b\theta \end{pmatrix}, (a, b > 0).$$

Conservation says that the speed after falling a distance $z = b\theta$ is $\sqrt{2gz}$, where g is the gravitational acceleration.

(a) Find the angular velocity $\frac{d\theta}{dt}$ when $\theta = 2\pi$.

Solution: the speed of the particle is

$$\left\| \frac{d}{dt} \vec{r}(\theta(t)) \right\|$$
.

But by the chain rule,

$$\frac{d}{dt}\vec{r}(\theta(t)) = \vec{r}'(\theta(t))\frac{d\theta}{dt}.$$

Now

$$\vec{r}'(\theta) = \begin{pmatrix} -a\sin\theta\\ a\cos\theta\\ b \end{pmatrix}.$$

The height of the particle is $z = b\theta$, so the speed is $\sqrt{2gb\theta}$. So $\sqrt{2gb\theta} = \|\vec{r}\prime(\theta)\|\frac{d\theta}{dt}$. But $\|\vec{r}\prime(\theta)\|^2 = a^2 + b^2$. So

$$\frac{d\theta}{dt} = \sqrt{\frac{2gb\theta}{a^2 + b^2}} \qquad (*)$$

So

$$\left. \frac{d\theta}{dt} \right|_{\theta=2\pi} = 2\sqrt{\frac{gb\pi}{a^2 + b^2}}.$$

(b) Find $\theta(t)$ and z(t).

Solution: By (*) we have

$$\frac{dt}{d\theta} = \sqrt{\frac{a^2 + b^2}{2gb\theta}} = \left(\sqrt{\frac{a^2 + b^2}{2gb}}\right)\theta^{-\frac{1}{2}},$$

Integrating, we get

$$t = 2\left(\sqrt{\frac{a^2 + b^2}{2gb}}\right)\theta^{\frac{1}{2}} + C.$$

Because the particle is at (a,0,0) when t=0, we conclude that C=0. So

$$\theta = \left(\frac{gb}{2}\right) \left(\frac{1}{a^2 + b^2}\right) t^2,$$

$$z = b\theta = \left(\frac{gb^2}{2}\right) \left(\frac{1}{a^2 + b^2}\right) t^2.$$

Remark:

$$\frac{d\theta}{dt} = \frac{gb}{a^2 + b^2}t.$$

(c) Find the tangential and normal components of the velocity $\vec{v}(t)$ and acceleration $\vec{a}(t)$. Does the acceleration have any nonzero component in the direction of the binormal vector \mathbf{B} ?

Solution: Using the formula for $\theta(t)$ from part (b), the particle's speed is

$$\|\vec{v}(t)\| = \sqrt{2gb\theta(t)} = \frac{gbt}{\sqrt{a^2 + b^2}}.$$

By definition, $\mathbf{T} = \frac{\vec{v}}{\|\vec{v}\|}$, so

$$\vec{v}(t) = \|\vec{v}(t)\|\mathbf{T} = \frac{gbt}{\sqrt{a^2 + b^2}}\mathbf{T}.$$

The tangent vector is independent of the parametrization, so we can use θ and get,

$$\mathbf{T} = \begin{pmatrix} -a\sin\theta\\ a\cos\theta\\ b \end{pmatrix} \frac{1}{\sqrt{a^2 + b^2}}$$

So the normal vector is

$$\mathbf{N} = \begin{pmatrix} -\cos\theta \\ -\sin\theta \\ 0 \end{pmatrix}$$

The acceleration is

$$\vec{a}(t) = \frac{d^2 \vec{r}}{dt^2}$$

$$= \frac{d}{dt} \begin{pmatrix} -a \sin \theta \\ a \cos \theta \\ b \end{pmatrix} \frac{d\theta}{dt}$$

$$= \begin{pmatrix} -a \cos \theta \\ -a \sin \theta \\ 0 \end{pmatrix} \left(\frac{d\theta}{dt} \right)^2 + \begin{pmatrix} -a \sin \theta \\ a \cos \theta \\ b \end{pmatrix} \frac{d^2 \theta}{dt^2}$$

$$= \begin{pmatrix} -a \cos \theta \\ -a \sin \theta \\ 0 \end{pmatrix} \left(\frac{gbt}{a^2 + b^2} \right)^2 + \begin{pmatrix} -a \sin \theta \\ a \cos \theta \\ b \end{pmatrix} \frac{gb}{a^2 + b^2}$$

$$= \frac{gb}{\sqrt{a^2 + b^2}} \mathbf{T} + a \left(\frac{gbt}{a^2 + b^2} \right)^2 \mathbf{N}.$$

Because it is a linear combination of \mathbf{T} and \mathbf{N} there is no component in the direction of \mathbf{B} .

p964 #11. When the position of a particle moving in space is given in cylindrical coordinates, the unit vectors we use to describe its position are

$$\mathbf{u}_r = (\cos \theta)\mathbf{i} + (\sin \theta)\mathbf{j}, \qquad \mathbf{u}_\theta = (-\sin \theta)\mathbf{i} + (\cos \theta)\mathbf{j},$$

and **k**. The particle's position vector is then $\mathbf{r} = r\mathbf{u}_r + z\mathbf{k}$, where r is the positive polar distance coordinate of the particle's position.

(a) Show that \mathbf{u}_r , \mathbf{u}_θ and \mathbf{k} for a right-handed frame of unit vectors.

Solution: They are unit vectors because

$$\mathbf{u}_r \cdot \mathbf{u}_r = \cos^2 \theta + \sin^2 \theta = 1,$$

$$\mathbf{u}_\theta \cdot \mathbf{u}_\theta = \sin^2 \theta + \cos^2 \theta = 1,$$

$$\mathbf{k} \cdot \mathbf{k} = 1^2 = 1.$$

They are mutually orthogonal because

$$\mathbf{u}_r \cdot \mathbf{u}_\theta = -\cos\theta \sin\theta + \sin\theta \cos\theta = 0,$$

$$\mathbf{u}_\theta \cdot \mathbf{k} = -0\sin\theta + 0\cos\theta + 0(1) = 0,$$

$$\mathbf{k} \cdot \mathbf{u}_r = 0\cos\theta + 0\sin\theta + 0(1) = 0.$$

All that remains is to show that $\mathbf{u}_r \times \mathbf{u}_\theta = \mathbf{k}$, but

$$\mathbf{u}_r \times \mathbf{u}_{\theta} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \end{vmatrix} = \cos^2 \theta \mathbf{k} - (-\sin^2 \theta \mathbf{k}) = \mathbf{k}.$$

(b) Show that

$$\frac{d\mathbf{u}_r}{d\theta} = \mathbf{u}_{\theta} \text{ and } \frac{d\mathbf{u}_{theta}}{d\theta} = -\mathbf{u}_r$$

Solution:

$$\frac{d\mathbf{u}_r}{d\theta} = \frac{d}{d\theta}(\cos\theta)\mathbf{i} + \frac{d}{d\theta}(\sin\theta)\mathbf{j} = (-\sin\theta)\mathbf{i} + (\cos\theta)\mathbf{j} = \mathbf{u}_{\theta}$$
$$\frac{d\mathbf{u}_{\theta}}{d\theta} = -\frac{d}{d\theta}(\sin\theta)\mathbf{i} + \frac{d}{d\theta}(\cos\theta)\mathbf{j} = (-\cos\theta)\mathbf{i} - (\sin\theta)\mathbf{j} = -\mathbf{u}_r$$

(c) Assuming that the necessary derivatives with respect to t exist, express $\mathbf{v} = \dot{\mathbf{r}}$ and $\mathbf{a} = \ddot{\mathbf{r}}$ in terms of \mathbf{u}_r , \mathbf{u}_θ , \mathbf{k} , \dot{r} , $\dot{\theta}$, \dot{z} , \ddot{r} , $\ddot{\theta}$, \ddot{z} .

Solution: We are given $\mathbf{r} = r\mathbf{u}_r + z\mathbf{k}$, where \mathbf{r} and \mathbf{u}_r are vectors that depend on t, r and z are scalars that depend on t and \mathbf{k} is a constant vector. Therefore

$$\mathbf{v} = \dot{\mathbf{r}} = \frac{d}{dt}(r\mathbf{u}_r + z\mathbf{k})$$

$$= \frac{d}{dt}r\mathbf{u}_r + \frac{d}{dt}z\mathbf{k}$$

$$= \dot{r}\mathbf{u}_r + r\frac{\mathbf{u}_r}{dt} + \dot{z}\mathbf{k}$$

$$= \dot{r}\mathbf{u}_r + r\frac{d\mathbf{u}_r}{d\theta}\frac{d\theta}{dt} + \dot{z}\mathbf{k}$$

$$= \dot{r}\mathbf{u}_r + r\dot{\theta}\mathbf{u}_\theta + \dot{z}\mathbf{k}$$

For the acceleration we get

$$\mathbf{a} = \dot{\mathbf{r}} = \frac{d}{dt}(\dot{r}\mathbf{u}_r + r\dot{\theta}\mathbf{u}_{\theta} + \dot{z}\mathbf{k})$$

$$= \frac{d}{dt}\dot{r}\mathbf{u}_r + \frac{d}{dt}r\dot{\theta}\mathbf{u}_{\theta} + \frac{d}{dt}\dot{z}\mathbf{k}$$

$$= \ddot{r}\mathbf{u}_r + \dot{r}\frac{d\mathbf{u}_r}{dt} + \dot{r}\dot{\theta}\mathbf{u}_{\theta} + \dot{r}\ddot{\theta}\mathbf{u}_{\theta} + r\dot{\theta}\frac{d\mathbf{u}_{\theta}}{dt} + \ddot{z}\mathbf{k}$$

$$= \ddot{r}\mathbf{u}_r + \dot{r}\frac{d\mathbf{u}_r}{d\theta}\frac{d\theta}{dt} + \dot{r}\dot{\theta}\mathbf{u}_{\theta} + \dot{r}\ddot{\theta}\mathbf{u}_{\theta} + r\dot{\theta}\frac{d\mathbf{u}_{\theta}}{d\theta}\frac{d\theta}{dt} + \ddot{z}\mathbf{k}$$

$$= \ddot{r}\mathbf{u}_r + \dot{r}\mathbf{u}_{\theta}\dot{\theta} + \dot{r}\dot{\theta}\mathbf{u}_{\theta} + \dot{r}\ddot{\theta}\mathbf{u}_{\theta} - r\dot{\theta}\mathbf{u}_r\dot{\theta} + \ddot{z}\mathbf{k}$$

$$= (\ddot{r} - r\dot{\theta}^2)\mathbf{u}_r + (r\ddot{\theta} + 2\dot{r}\ddot{\theta})\mathbf{u}_{\theta} + \ddot{z}\mathbf{k}$$

p964 #12. (a) Show that when you express $ds^2 = dx^2 + dy^2 + dz^2$ in terms of cylindrical coordinates, you get $ds^2 = dr^2 + r^2 d\theta^2 + dz^2$.

Solution: Expressing cartesian coordinates in terms of cylindrical coordinates we get

$$x = r \cos \theta$$
$$y = r \sin \theta$$
$$z = z.$$

Differentiating we get

$$dx = \cos \theta dr - r \sin \theta d\theta$$
$$dy = \sin \theta dr + r \cos \theta d\theta$$
$$dz = dz.$$

Squaring we get

$$dx^{2} = \cos^{2}\theta dr^{2} - 2r\sin\theta\cos\theta dr d\theta + r^{2}\sin^{2}\theta d\theta^{2}$$
$$dy^{2} = \sin^{2}\theta dr^{2} + 2r\sin\theta\cos\theta dr d\theta + r^{2}\cos^{2}\theta d\theta^{2}$$
$$dz^{2} = dz^{2}.$$

Adding we get

$$ds^{2} = dx^{2} + dy^{2} + dz^{2} = ds^{2} = dr^{2} + r^{2}d\theta^{2} + dz^{2}$$

(b) Interpret this result geometrically in terms of the edges and a diagonal of a box. Sketch the box.

Solution: Insert solution here.

(c) Use the result in part (a) to find the length of the curve $r = e^{\theta}$, $z = e^{\theta}$, $0 \le \theta \le \ln 8$.

Solution: Because $r=z=e^{\theta}$ we get $dr=dz=e^{\theta}d\theta,$ so

$$L = \int_0^{\ln 8} \sqrt{dr^2 + r^2 d\theta^2 + dz^2}$$

$$= \int_0^{\ln 8} \sqrt{e^{2\theta} d\theta^2 + e^{2\theta} d\theta^2 + e^{2\theta} d\theta^2}$$

$$= \int_0^{\ln 8} \sqrt{3e^{2\theta} d\theta^2}$$

$$= \int_0^{\ln 8} \sqrt{3}e^{\theta} d\theta = \left[\sqrt{3}e^{\theta}\right]_0^{\ln 8}$$

$$= 8\sqrt{3} - \sqrt{3} = 7\sqrt{3}.$$