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1 Derivation of Conservation Laws

1.1 Context and Conventions

By default quantities are functions of space x and time t.

Let u be the velocity field (which is convecting the contin-
uum).

Let a, 3, and q stand for arbitrary (convected) quantities.

Let U(t) stand for an arbitrary convected region (volume
element). (U(t) is simply connected with smooth bound-
ary.)

Let OU denote the boundary of the region U.

Let [ := fU(t), and let § := fé)U(t)’ i.e. the default domain
of integration is the arbitrary convected volume element.

Let n denote the outward unit normal to oU.

1.2 Kinetics Calculus

Definitions.

Let d; := % + u - V denote the convective derivative.

Let §; = — (%a + V - (ua)) denote the conservative
derivative. (I made up this term and this symbol. §; is
supposed to be reminiscent of the averaging operator
and § signifying differentiation.)

Leibnitz rules.
Observe that §,a = dya + (V - u)a. Hence:
dt(aﬁ) = (dt()é)ﬁ + a(dtﬁ)
di(af) = di(af) + (V-u)ap
= (dya)B + a(diB) + (V -u)ap
= (5150[)6 + O{(dtﬁ)
= (di) B+ a(8:0).

Gauss’s Theorem
[Va= ¢§na, fV~q:fn'q‘,andexqunxq.

Reynolds’ Transport Theorem.

%fa:fﬁtoz , i.e.
- fU(t) o= fU(t)(%o‘ + V- (ua))
Justification. (Convection applies to U(t), not a(x,¢).) Use

time-splitting on the time increment: alternatively allow
a and U(t) to evolve. Then apply Gauss’s Theorem.

%fU(t)OéZI%Oz—l—fn-ua:f%a—l—fV~(ua))

1.3 Conservation Laws
1.3.1 Definitions of Quanitities

Let p denote mass per volume.

Observe that u is momentum per mass.

Let e denote internal energy per volume.

Observe that % pu? is macroscopic kinetic energy per vol-
ume.

Let f denote body force (force per unit mass).

Let o denote the stress tensor: n - ¢ is the surface force per
unit area on an infinitesimal surface element orthogonal
to n, where n points away from the side of the interface
on which the force acts. Thus o;; := e; - 0 - e; is the
component in the direction e; of the surface force acting
on the low side of an infinitesimal surface orthogonal to
e;. This stress tensor representation of surface forces is
justified by noting that the sum of the forces must be zero
on an infinitesimal tetrahedron with 3 sides aligned with
the principle axes. Application of conservation of angu-
lar momentum to an infinitesimal cube aligned with the
principle axes shows that the stress tensor is symmetric.
[cite Rutherford Aris.]

Let q denote the heat flux: q - n is the rate of external
flow of heat per unit area across an infinitesimal surface
element orthogonal to n (i.e. the component of the flow
of heat in the direction of n).

1.3.2 Conservation of Mass

%fp:(),i.e.’&p:()‘,i.e. ’pﬂ—V-pu:O.

1.3.3 Conservation of Momentum

4 [pa=¢n-o+ [pf,ie.

’& (pu)=V -0+ pf‘ (conservation form).

Simplify using Leibnitz rule and conservation of mass:
3:(pu) = (8rpya + p(diu). So:
’ pdia =V -0+ pf ‘ (simplified form).

1.3.4 Conservation of Energy

%I(PB'F%PU'U)=5§n-o-u+fu~pf—§n-q, ie.
Si(pe+ipu-u)=V-(c-u)+u-pf —V-q

(conservation form)

We can simplify using Leibnitz and the previous conserva-
tion laws.

Simplify the following terms using Leibnitz rules and con-
servation of mass:

B1(pe) = plde) + Bere.

Bi(bpu ) = pd (bu - w) = pldew) - u

V . (0’ . ll) = %(Jiju]') = Uija%iuj =+ (%O’ij)uj

=o0--Vu+ (V-0)-u (where -- here denotes contraction
of corresponding indices).

Now put the terms together and invoke the simplified form
of the conservation of momentum equation. Get:

pdie + (pdyu) -u=0--Vu+ (V-0)-u+pf -u-V-q.

(pdiu)-u

So ’ pdie =0 --Vu—V - q‘ (simplified form)




2 Derivation of Navier-Stokes

2.1 Constitutive Relations
2.1.1 Stress-Strain (terse)

Assume that 0 = —pI + 7 where

p = pressure
I = identity tensor (2nd order)
T = viscous/shear stress tensor

The viscous stress tensor is assumed to depend linearly on
the rate-of-strain tensor Vu. This tensor is the sum of
its symmetric and antisymmetric parts. Constant an-
tisymmetric rate-of-strain tensors correspond bijectively
with rigid-body rotations. The viscous stress tensor is
assumed to be zero for a fluid undergoing rigid-body ro-
tation. Then the viscous stress tensor 7 must be a linear
function of the even part of the rate-of-deformation ten-
sor, D := 1((Vu)T + Vu).

So 75 = KijriDyy for some fourth-order tensor K. Assume
that K is isotropic. Then Kjjz; is a linear combination
of products of §’s:

Kijr = N0 + [10;105; + U638

Since we know that Dy; is symmetric, we write
Kijri = Nijo + p(6irdj0 + 6djn) +v(dindji — dudjn)-

So Tij = AéijDkk + QMDij

SoV-7=AVV-u+u(VV-u+V- Vu)

So|pdiu = AVV - u+ p(VV -u+ V- Vu) - Vp+ pf |

Assume that the fluid is incompressible:

Then V - 7 = pAu.
So’pdtu:uAu—Vp—l—pf‘




