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1 Derivation of Conservation Laws

1.1 Context and Conventions

By default quantities are functions of space x and time t.
Let u be the velocity field (which is convecting the contin-

uum).
Let α, β, and q stand for arbitrary (convected) quantities.
Let U(t) stand for an arbitrary convected region (volume

element). (U(t) is simply connected with smooth bound-
ary.)

Let ∂U denote the boundary of the region U .
Let

∫
:=

∫

U(t)
, and let

∮
:=

∫

∂U(t)
, i.e. the default domain

of integration is the arbitrary convected volume element.
Let n denote the outward unit normal to ∂U .

1.2 Kinetics Calculus

Definitions.
Let dt := ∂

∂t
+ u · ∇ denote the convective derivative.

Let δ̄t := α 7→ ( ∂
∂t

α + ∇ · (uα)) denote the conservative
derivative. (I made up this term and this symbol. δ̄t is
supposed to be reminiscent of the averaging operator −

∫

and δ signifying differentiation.)

Leibnitz rules.
Observe that δ̄tα = dtα + (∇ · u)α. Hence:
dt(αβ) = (dtα)β + α(dtβ).
δ̄t(αβ) = dt(αβ) + (∇ · u)αβ

= (dtα)β + α(dtβ) + (∇ · u)αβ

= (δ̄tα)β + α(dtβ)
= (dtα)β + α(δ̄tβ).

Gauss’s Theorem
∫
∇α =

∮
nα,

∫
∇ · q =

∮
n · q , and

∫
∇× q =

∮
n × q.

Reynolds’ Transport Theorem.

d
dt

∫
α =

∫
δ̄tα , i.e.

d
dt

∫

U(t)
α =

∫

U(t)
( ∂

∂t
α + ∇ · (uα))

Justification. (Convection applies to U(t), not α(x, t).) Use
time-splitting on the time increment: alternatively allow
α and U(t) to evolve. Then apply Gauss’s Theorem.

d
dt

∫

U(t)
α =

∫
∂
∂t

α +
∮

n · uα =
∫

∂
∂t

α +
∫
∇ · (uα))

1.3 Conservation Laws

1.3.1 Definitions of Quanitities

Let ρ denote mass per volume.
Observe that u is momentum per mass.
Let e denote internal energy per volume.
Observe that 1

2ρu2 is macroscopic kinetic energy per vol-
ume.

Let f denote body force (force per unit mass).

Let σ denote the stress tensor: n · σ is the surface force per
unit area on an infinitesimal surface element orthogonal
to n, where n points away from the side of the interface
on which the force acts. Thus σij := ei · σ · ej is the
component in the direction ej of the surface force acting
on the low side of an infinitesimal surface orthogonal to
ei. This stress tensor representation of surface forces is
justified by noting that the sum of the forces must be zero
on an infinitesimal tetrahedron with 3 sides aligned with
the principle axes. Application of conservation of angu-
lar momentum to an infinitesimal cube aligned with the
principle axes shows that the stress tensor is symmetric.
[cite Rutherford Aris.]

Let q denote the heat flux: q · n is the rate of external
flow of heat per unit area across an infinitesimal surface
element orthogonal to n (i.e. the component of the flow
of heat in the direction of n).

1.3.2 Conservation of Mass

d
dt

∫
ρ = 0, i.e. δ̄tρ = 0 , i.e. ρt + ∇ · ρu = 0 .

1.3.3 Conservation of Momentum

d
dt

∫
ρu =

∮
n · σ +

∫
ρf , i.e.

δ̄t(ρu) = ∇ · σ + ρf (conservation form).

Simplify using Leibnitz rule and conservation of mass:
δ̄t(ρu) = »»»(δ̄tρ)u + ρ(dtu). So:

ρdtu = ∇ · σ + ρf (simplified form).

1.3.4 Conservation of Energy

d
dt

∫
(ρe + 1

2ρu · u) =
∮

n · σ · u +
∫

u · ρf −
∮

n · q, i.e.

δ̄t(ρe + 1
2ρu · u) = ∇ · (σ · u) + u · ρf −∇ · q

(conservation form)

We can simplify using Leibnitz and the previous conserva-
tion laws.

Simplify the following terms using Leibnitz rules and con-
servation of mass:

δ̄t(ρe) = ρ(dte) +
©

©
©*

0

(δ̄tρ)e.

δ̄t(
1
2ρu · u) = ρdt(

1
2u · u) = ρ(dtu) · u.

∇ · (σ · u) = ∂
∂xi

(σijuj) = σij
∂

∂xi

uj + ( ∂
∂xi

σij)uj

= σ · ·∇u + (∇ · σ) · u (where ·· here denotes contraction
of corresponding indices).

Now put the terms together and invoke the simplified form
of the conservation of momentum equation. Get:

ρdte + (ρdtu) · u = σ · ·∇u + (∇ · σ) · u + ρf · u
︸ ︷︷ ︸

(ρdtu)·u

−∇ · q.

So ρdte = σ · ·∇u −∇ · q (simplified form)
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2 Derivation of Navier-Stokes

2.1 Constitutive Relations

2.1.1 Stress-Strain (terse)

Assume that σ = −pI + τ where

p = pressure
I = identity tensor (2nd order)
τ = viscous/shear stress tensor

The viscous stress tensor is assumed to depend linearly on
the rate-of-strain tensor ∇u. This tensor is the sum of
its symmetric and antisymmetric parts. Constant an-
tisymmetric rate-of-strain tensors correspond bijectively
with rigid-body rotations. The viscous stress tensor is
assumed to be zero for a fluid undergoing rigid-body ro-
tation. Then the viscous stress tensor τ must be a linear
function of the even part of the rate-of-deformation ten-
sor, D := 1

2 ((∇u)T + ∇u).
So τij = KijklDkl for some fourth-order tensor K. Assume

that K is isotropic. Then Kijkl is a linear combination
of products of δ’s:

Kijkl = λδijδkl + µ̃δikδjl + ν̃δilδjk.
Since we know that Dkl is symmetric, we write

Kijkl = λδijδkl + µ(δikδjl + δilδjk) + ν(δikδjl − δilδjk).
So τij = λδijDkk + 2µDij

So ∇ · τ = λ∇∇ · u + µ(∇∇ · u + ∇ · ∇u)

So ρdtu = λ∇∇ · u + µ(∇∇ · u + ∇ · ∇u) −∇p + ρf

Assume that the fluid is incompressible: ∇ · u = 0
Then ∇ · τ = µ4u.

So ρdtu = µ4u −∇p + ρf

2


