Derivation of Navier-Stokes

by Alec Johnson, May 26, 2006

1 Derivation of Conservation Laws

1.1 Context and Conventions

By default quantities are functions of space \mathbf{x} and time t. Let \mathbf{u} be the velocity field (which is convecting the continuum).

- Let α , β , and \mathbf{q} stand for arbitrary (convected) quantities.
- Let U(t) stand for an arbitrary convected region (volume element). (U(t) is simply connected with smooth boundary.)

Let ∂U denote the boundary of the region U.

Let $\int := \int_{U(t)}$, and let $\oint := \int_{\partial U(t)}$, i.e. the default domain of integration is the arbitrary convected volume element. Let **n** denote the outward unit normal to ∂U .

1.2 Kinetics Calculus

Definitions.

Let $d_t := \frac{\partial}{\partial t} + \mathbf{u} \cdot \nabla$ denote the **convective derivative**.

Let $\delta_t := \alpha \mapsto (\frac{\partial}{\partial t}\alpha + \nabla \cdot (\mathbf{u}\alpha))$ denote the **conservative derivative**. (I made up this term and this symbol. δ_t is supposed to be reminiscent of the averaging operator \mathbf{f} and δ signifying differentiation.)

Leibnitz rules.

Observe that $\delta_t \alpha = d_t \alpha + (\nabla \cdot \mathbf{u}) \alpha$. Hence: $d_t(\alpha\beta) = (d_t\alpha)\beta + \alpha(d_t\beta)$. $\delta_t(\alpha\beta) = d_t(\alpha\beta) + (\nabla \cdot \mathbf{u})\alpha\beta$ $= (d_t\alpha)\beta + \alpha(d_t\beta) + (\nabla \cdot \mathbf{u})\alpha\beta$ $= (\delta_t\alpha)\beta + \alpha(d_t\beta)$ $= (d_t\alpha)\beta + \alpha(\delta_t\beta)$.

Gauss's Theorem $\int \nabla \alpha = \oint \mathbf{n} \alpha, \left[\int \nabla \cdot \mathbf{q} = \oint \mathbf{n} \cdot \mathbf{q} \right], \text{ and } \int \nabla \times \mathbf{q} = \oint \mathbf{n} \times \mathbf{q}.$

Reynolds' Transport Theorem.

$$\frac{\frac{d}{dt} \int \alpha = \int \delta_t \alpha}{\frac{d}{dt} \int_{U(t)} \alpha = \int_{U(t)} \left(\frac{\partial}{\partial t} \alpha + \nabla \cdot (\mathbf{u}\alpha) \right) }$$

Justification. (Convection applies to U(t), not $\alpha(\mathbf{x}, t)$.) Use time-splitting on the time increment: alternatively allow

 α and U(t) to evolve. Then apply Gauss's Theorem. $\frac{d}{dt} \int_{U(t)} \alpha = \int \frac{\partial}{\partial t} \alpha + \oint \mathbf{n} \cdot \mathbf{u} \alpha = \int \frac{\partial}{\partial t} \alpha + \int \nabla \cdot (\mathbf{u}\alpha)$

1.3 Conservation Laws

1.3.1 Definitions of Quanitities

Let ρ denote mass per volume.

Observe that ${\bf u}$ is momentum per mass.

Let e denote internal energy per volume.

Observe that $\frac{1}{2}\rho u^2$ is macroscopic kinetic energy per volume.

Let \mathbf{f} denote body force (force per unit mass).

- Let σ denote the stress tensor: $\mathbf{n} \cdot \sigma$ is the surface force per unit area on an infinitesimal surface element orthogonal to \mathbf{n} , where \mathbf{n} points away from the side of the interface on which the force acts. Thus $\sigma_{ij} := \mathbf{e}_i \cdot \sigma \cdot \mathbf{e}_j$ is the component in the direction \mathbf{e}_j of the surface force acting on the low side of an infinitesimal surface orthogonal to \mathbf{e}_i . This stress tensor representation of surface forces is justified by noting that the sum of the forces must be zero on an infinitesimal tetrahedron with 3 sides aligned with the principle axes. Application of conservation of angular momentum to an infinitesimal cube aligned with the principle axes shows that the stress tensor is symmetric. [cite Rutherford Aris.]
- Let \mathbf{q} denote the heat flux: $\mathbf{q} \cdot \mathbf{n}$ is the rate of external flow of heat per unit area across an infinitesimal surface element orthogonal to \mathbf{n} (i.e. the component of the flow of heat in the direction of \mathbf{n}).

1.3.2 Conservation of Mass

$$\frac{d}{dt}\int \rho = 0$$
, i.e. $\delta_t \rho = 0$, i.e. $\rho_t + \nabla \cdot \rho \mathbf{u} = 0$.

1.3.3 Conservation of Momentum

$$\frac{d}{dt}\int \rho \mathbf{u} = \oint \mathbf{n} \cdot \boldsymbol{\sigma} + \int \rho \mathbf{f}$$
, i.e.

 $\boxed{\begin{array}{l} \boldsymbol{\delta}_t(\rho \mathbf{u}) = \nabla \cdot \boldsymbol{\sigma} + \rho \mathbf{f} \\ \text{Simplify using Leibnitz rule and conservation of mass:} \\ \boldsymbol{\delta}_t(\rho \mathbf{u}) = (\boldsymbol{\delta}_t \rho) \mathbf{u} + \rho(d_t \mathbf{u}). \end{array}}$

 $\boxed{\rho d_t \mathbf{u} = \nabla \cdot \boldsymbol{\sigma} + \rho \mathbf{f}} \text{ (simplified form).}$

1.3.4 Conservation of Energy

$$\frac{d}{dt} \int (\rho e + \frac{1}{2}\rho \mathbf{u} \cdot \mathbf{u}) = \oint \mathbf{n} \cdot \boldsymbol{\sigma} \cdot \mathbf{u} + \int \mathbf{u} \cdot \rho \mathbf{f} - \oint \mathbf{n} \cdot \mathbf{q}, \text{ i.e.}$$

$$\frac{\delta_t (\rho e + \frac{1}{2}\rho \mathbf{u} \cdot \mathbf{u}) = \nabla \cdot (\boldsymbol{\sigma} \cdot \mathbf{u}) + \mathbf{u} \cdot \rho \mathbf{f} - \nabla \cdot \mathbf{q}}{(\text{conservation form})}$$

We can simplify using Leibnitz and the previous conservation laws.

Simplify the following terms using Leibnitz rules and conservation of mass:

$$\begin{split} \delta_t(\rho e) &= \rho(d_t e) + (\delta_t \rho) e^{\mathbf{a} \cdot \mathbf{b}} \\ \delta_t(\frac{1}{2} \rho \mathbf{u} \cdot \mathbf{u}) &= \rho d_t(\frac{1}{2} \mathbf{u} \cdot \mathbf{u}) = \rho(d_t \mathbf{u}) \cdot \mathbf{u}. \\ \nabla \cdot (\sigma \cdot \mathbf{u}) &= \frac{\partial}{\partial x_i} (\sigma_{ij} \mathbf{u}_j) = \sigma_{ij} \frac{\partial}{\partial x_i} \mathbf{u}_j + (\frac{\partial}{\partial x_i} \sigma_{ij}) \mathbf{u}_j \\ &= \sigma \cdot \cdot \nabla \mathbf{u} + (\nabla \cdot \sigma) \cdot \mathbf{u} \text{ (where \cdots here denotes contraction} \\ \text{of corresponding indices).} \end{split}$$

Now put the terms together and invoke the simplified form of the conservation of momentum equation. Get:

$$\rho d_t e + (\rho d_t \mathbf{u}) \cdot \mathbf{u} = \sigma \cdot \nabla \mathbf{u} + \underbrace{(\nabla \cdot \sigma) \cdot \mathbf{u} + \rho \mathbf{f} \cdot \mathbf{u}}_{(\rho d_t \mathbf{u}) \cdot \mathbf{u}} - \nabla \cdot \mathbf{q}.$$

So
$$\rho d_t e = \sigma \cdot \nabla \mathbf{u} - \nabla \cdot \mathbf{q}$$
 (simplified form)

2 Derivation of Navier-Stokes

2.1 Constitutive Relations

2.1.1 Stress-Strain (terse)

Assume that $\sigma = -pI + \tau$ where

p = pressure I = identity tensor (2nd order) $\tau = \text{viscous/shear stress tensor}$

- The viscous stress tensor is assumed to depend linearly on the rate-of-strain tensor $\nabla \mathbf{u}$. This tensor is the sum of its symmetric and antisymmetric parts. Constant antisymmetric rate-of-strain tensors correspond bijectively with rigid-body rotations. The viscous stress tensor is assumed to be zero for a fluid undergoing rigid-body rotation. Then the viscous stress tensor τ must be a linear function of the even part of the rate-of-deformation tensor, $D := \frac{1}{2}((\nabla \mathbf{u})^T + \nabla \mathbf{u}).$
- So $\tau_{ij} = K_{ijkl} D_{kl}$ for some fourth-order tensor K. Assume that K is isotropic. Then K_{ijkl} is a linear combination of products of δ 's:

$$\begin{split} K_{ijkl} &= \lambda \delta_{ij} \delta_{kl} + \tilde{\mu} \delta_{ik} \delta_{jl} + \tilde{\nu} \delta_{il} \delta_{jk}.\\ \text{Since we know that } D_{kl} \text{ is symmetric, we write} \\ K_{ijkl} &= \lambda \delta_{ij} \delta_{kl} + \mu (\delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk}) + \nu (\delta_{ik} \delta_{jl} - \delta_{il} \delta_{jk}).\\ \text{So } \tau_{ij} &= \lambda \delta_{ij} D_{kk} + 2\mu D_{ij}\\ \text{So } \nabla \cdot \tau &= \lambda \nabla \nabla \cdot \mathbf{u} + \mu (\nabla \nabla \cdot \mathbf{u} + \nabla \cdot \nabla \mathbf{u}) \\ \text{So } \boxed{\rho d_t \mathbf{u} = \lambda \nabla \nabla \cdot \mathbf{u} + \mu (\nabla \nabla \cdot \mathbf{u} + \nabla \cdot \nabla \mathbf{u}) - \nabla p + \rho \mathbf{f}} \end{split}$$

Assume that the fluid is incompressible: $\nabla \cdot \mathbf{u} = 0$ Then $\nabla \cdot \tau = \mu \Delta \mathbf{u}$. So $\rho d_t \mathbf{u} = \mu \Delta \mathbf{u} - \nabla p + \rho \mathbf{f}$